Mitigating Slippage in RFQ Services

Abstract


DThis study describes an approach to mitigating the slippage issue in RFQ services. Slippage refers to the difference between the expected price and the executed price in a quote for buying or selling a certain amount of a currency pair. The two main strategies considered were spread adjustment and quote cancellation. The study involves collecting and processing data to statistically infer the optimal spread, which simultaneously maintains a competitive price, reduces company losses, and complies with the SLA. The result is the establishment of a simple and reasonable heuristic for approaching the problem and a webapp for visualizing the proposed heuristic.

Keywords: Slippage, RFQ, Heuristic

References

Aldridge, I. (2022). Slippage in AMM markets. SSRN.

Almgren, R., & Chriss, N. (2000). Optimal execution of portfolio transactions. Journal of Risk, 3(2):5–40.

Aoyagi, Y., & Ibuka, N. (2021). Simulation-based estimation of execution cost in crypto market using Monte Carlo methods. arXiv preprint arXiv:2109.12549.

Bitstamp (2025a). Bitstamp live order book. [link]. [Online; accessed 20-March-2025].

Bitstamp (2025b). Bitstamp public API (v2). [link]. [Online; accessed 20-March-2025].

Bitstamp (2025c). Buy & trade with ease on the trusted crypto exchange. [link]. [Online; accessed 20-March2025].

Bouchaud, J.-P., Bonart, J., Donier, J., & Gould, M. (2018). Trades, Quotes and Prices: Financial Markets Under the Microscope. Cambridge University Press.

Cartea, Á., Jaimungal, S., & Penalva, J. (2015). Algorithmic and High-Frequency Trading. Cambridge University Press.

Coinbase (2022). Machine learning at coinbase. [Online; acessado em abril de 2025].

Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2):223.

Dixon, M., Halperin, I., & Bilokon, P. (2020). Machine Learning in Finance: From Theory to Practice. Springer.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4):987–1007.

Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., & Howison, S. D. (2013). Limit order books. Quantitative Finance, 13(11):1709–1742.

Kaiko (2023). Execution strategies and slippage in crypto markets. [Online; acessado em abril de 2025].

Lim, T. (2022). Predictive crypto-asset automated market making architecture for decentralized finance using deep reinforcement learning. arXiv, (2211.01346).

Luan Martins (2025a). Mitigando slippage. [link]. [Online; accessed 26-March-2025].

Luan Martins (2025b). Repositório do notebook Jupyter. [link]. [Online; accessed 26-March-2025].

Luan Martins (2025c). Repositório do webapp mitigando slippage. [link]. [Online; accessed 26-March-2025].

Martins, L. (2023). Entendendo e evitando o slippage problem na web3.0. Pantheon.

Nevmyvaka, Y., Feng, Y., & Kearns, M. (2006). Reinforcement learning for optimized trade execution. In Proceedings of the 23rd International Conference on Machine Learning (pp. 673–680).

Parfin (2025). Empowering you with full life cycle digital asset solutions to shape the future of finance. [link]. [Online; acessado em abril de 2025].

Research, P. (2023). Estimating market impact in crypto markets. [Online; acessado em abril de 2025].

Shah, J., Javare, P., & Khetan, D. (2020). Slipswap: Reduce the slippage that is incurred during the swap of tokens using algorithmic analysis. IEEE, 131–134.

Spooner, T., Savani, R., & Megson, S. (2018). Market making via reinforcement learning. arXiv preprint arXiv:1804.04216.

Street, J. (2023). Latency arbitrage and quote protection. [Online; acessado em abril de 2025].

Trading, R. (2023). Rl for mm strategies. [Online; acessado em abril de 2025].

Wintermute (2023). Crypto liquidity 101. [Online; acessado em abril de 2025].
Published
2025-05-19
FELIX, Luan Martins; MENASCHÉ, Daniel Sadoc. Mitigating Slippage in RFQ Services. In: BLOCKCHAIN WORKSHOP: THEORY, TECHNOLOGY AND APPLICATIONS (WBLOCKCHAIN), 8. , 2025, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 182-195. DOI: https://doi.org/10.5753/wblockchain.2025.9509.