Spatial Interpolation of Environmental and Aerosol Data in the Amazon Basin Region Near Manaus-AM

Abstract


In the Amazon Forest, Manaus city is considered an ideal laboratory for studies on the effects of human activies on terrestrial ecosystems and climate in a tropical forest. Through the GOAmazon 2014/15 project, researchers were able to collect atmospherical data, regarding polutants and meteorological variables. In this context, this project aimed to collect and treat air pollutant and meteorological data, comparing spatial interpolation methods, such as linear, through splines and nearest neighbor, and choosing the best one to map the variables in the region downwind of Manaus city and create new knowledge about Manaus plume and its impact to the environment. These will enable the development of new experiments.

Keywords: Spatial Interpolation, GOAmazon, Aerosols

References

Ahrens, C. D. (2012). Meteorology today: an introduction to weather, climate, and the environment. Cengage Learning, pages 225–227.

Anguita, A., Ghelardoni, L., Ghio, A., Oneto, L., and Ridella, S. (2012). The ‘k’ ink-fold cross validation. European Symposium on Artificial Networks, Computational Intelligence and Machine Learning 2012 proceedings.

Basso, L. S. (2016). Seasonality and internal variability of ch4 fluxes from the eastern amazon basin inferred from atmospheric mole fraction profiles. Journal of Geophysical Research: Atmospheres, 121(1):168–184.

Beck, V. (2012). Methane airborne measurements and comparison to global models during barca. Journal of Geophysical Research: Atmospheres, 117(15).

Cirino, G., Brito, J., Barbosa, H. M., Rizzo, L., Tundev, P., de Sa, S. S., Jimenez, J. L., Palm, B., Carbone, S., Lavric, J. V., Souza, R. A., Wolff, S., Walter, D., Tota, J., Oliveira, M. B., Martin, S. T., and Artaxo, P. (2018). Observations of manaus urban plume evolution and interaction with biogenic emissions in goamazon 2014/5. Atmospheric Environment, 191:513–524.

Fisch, G., Tota, J., and Machado, L. (2004). The convective boundary layer over pasture and forest in amazonia. Theor Appl Climatol, 78:47–59.

Hunter, J., Dale, D., Firing, E., Droettboom, M., and the Matplotlib development team (2012). Matplotlib documentation. https://matplotlib.org/stable/users/index.html. Acesso em: 2021-03-01.

INPE (2021). Programa queimadas. http://queimadas.dgi.inpe.br/queimadas/portal. Acesso em: 2021-03-01.

JupyterTeam (2015).The jupyter notebook. https://jupyter- notebook.readthedocs.io/en/stable/. Acesso em: 2021-03-01.

Mancuso, A. C. (2013). Uma investigação do desempenho de métodos de combinação de previsões: Simulada e aplicada. Universidade Federal do Rio Grande do Sul.

Martin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R. A. F. d., Schumacher, C., Wang, J., Biscaro, T., Brito, J., Calheiros, A., et al. (2017). The green ocean amazon experiment (goamazon2014/5) observes pollution affecting gases, aerosols, clouds, and rainfall over the rain forest. Bulletin of the American Meteorological Society, 98(5):981–997.

Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F. d., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H., Fan, J., et al. (2016). Introduction: observations and modeling of the green ocean amazon (goamazon2014/5). Atmospheric Chemistry and Physics, 16(8):4785–4797.

Miyaji, R. O., Bauer, L. O., Corrêa, P. L. P., Almeida, F. V., Rizzo, L., and Ferrari, V. M.(2021). Interpolação espacial de variáveis ambientais e aerossóis na bacia amazônica. Zenodo. DOI: 10.5281/zenodo.4820954.

Myers, D. E. (1994). Spatial interpolation: an overview. Geoderma, 62:17–28.

Orlando, J. P., Alvim, D. S., Yamazaki, A., Correˆa, S. M., and Gatti, L. V. (2010). Ozone precursors for the são paulo metropolitan area. The Science of the Total Environment, 408(7):1612–1620.

PandasDevelopmentTeam (2021). Pandas documentation. https://pandas.pydata.org/docs/. Acesso em: 2021-03-01.

ScipyCommunity (2021). Numpy v1.20 manual. https://numpy.org/doc/stable/. Acesso em: 2021-03-01.

SciPyDevelopers (2021). Scipy documentation. https://www.scipy.org/docs.html. Acesso em: 2021-03-01.

Shrivastava, M., Andreae, M. O., Artaxo, P., Barborsa, H. M., Berg, L. K., Brito, J., Ching, J., Isaacman-VanWertz, G., Yee, L. D., Ynoue, R., Zaveri, R. A., Zelenyuk, A., and Zhao, C. (2019). Urban pollution greatly enhances formation of natural aerosols over the amazon rainforest. Nature Communications, 10:1–12.

Stull, R. B. (1988). An introduction to boundary layer meteorology. Springer Scienceand Business Media, pages 1–14.

Upton, G. and Cook, I. (1996). Understanding Statistics. Oxford University Press, Oxford.

Wong, D. W., Yuang, L., and Perlin, S. A. (2004). Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Analysis and Environmental Epidemiology, 14(5):404–415.
Published
2021-07-18
MIYAJI, Renato O.; BAUER, Lucas O.; FERRARI, Victor M.; ALMEIDA, Felipe V. de; CORRÊA, Pedro L. P.; RIZZO, Luciana V.. Spatial Interpolation of Environmental and Aerosol Data in the Amazon Basin Region Near Manaus-AM. In: WORKSHOP ON COMPUTING APPLIED TO THE MANAGEMENT OF THE ENVIRONMENT AND NATURAL RESOURCES (WCAMA), 12. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 97-106. ISSN 2595-6124. DOI: https://doi.org/10.5753/wcama.2021.15741.