Forecasting and building operational indicators for sugarcane production through time series

  • Anderson da Silva Santos UFRPE
  • João Vitor da Silva UFRPE
  • Victor Wanderley Costa de Medeiros UFRPE
  • Glauco Estácio Gonçalves UFRPE

Abstract


Climate studies have gained relevance due to the increase in climatic events with severe impacts observed in the last decade, especially in urban areas. For example, large volumes of precipitation can cause floods and landslides, impacting city traffic and even costing citizens' lives. In order to make it possible to monitor rainfall volumes, pluviometers are installed throughout the country. However, such stations are controlled by multiple organizations and produce data in different space/time resolutions and formats. This paper proposes TEMPO, a system that uses OLAP (Online Analytical Processing) techniques to propose efficient storage, query, and analysis mechanisms to handle pluviometers data. To evaluate the tool, we present a case study showing the integration and analysis of data from CEMADEN and Alerta Rio.

Keywords: OLAP, Visualization, Rainfall Data

References

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. John Wiley & Sons.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a):427–431.

Haviluddin and Dengen, N. (2016). Comparison of sarima, narx and bpnn models in forecasting time series data of network traffic. In 2016 2nd International Conference on Science in Information Technology (ICSITech), pages 264–269.

Hossain, M. M. and Abdulla, F. (2015). Forecasting the sugarcane production in bangladesh by arima model. Journal of Statistics Applications & Probability, 4(2):297.

Mondal, P., Shit, L., and Goswami, S. (2014). Study of effectiveness of time series modeling (arima) in forecasting stock prices. International Journal of Computer Science, Engineering and Applications, 4(2):13.

MURTA, R. M., TEODORO, S. M., Bonomo, P., and CHAVES, M. A. (2005). Precipitação pluvial mensal em níveis de probabilidade pela distribuição gama para duas localidades do sudoeste da bahia. Ciência e Agrotecnologia, 29(5):988–994.

Pereira, I. Z., dos Santos, I. F. S., de Castro, H. L., and Barros, S. R. M. (2019). Uma breve revisão sobre a indústria sucroalcooleira no brasil com enfoque no potencial de geração de energia. Revista Brasileira de Energia — Vol, 25(2).

Saath, K. C. d. O. and Fachinello, A. L. (2018). Crescimento da demanda mundial de alimentos e restrições do fator terra no brasil. Revista de Economia e Sociologia Rural, 56(2):195–212.

Sammut, C. and Webb, G. I., editors (2010). Holdout Evaluation, pages 506–507. Springer US, Boston, MA.

Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4):591–611.

Silva, J. V. d. (2019). Suporte a decisão no setor sucroalcooleiro. B.S. thesis, Brasil.

Suresh, K. and Priya, S. K. (2011). Forecasting sugarcane yield of tamilnadu using arima models. Sugar Tech, 13(1):23–26.
Published
2021-07-18
SANTOS, Anderson da Silva; SILVA, João Vitor da; MEDEIROS, Victor Wanderley Costa de; GONÇALVES, Glauco Estácio. Forecasting and building operational indicators for sugarcane production through time series. In: WORKSHOP ON COMPUTING APPLIED TO THE MANAGEMENT OF THE ENVIRONMENT AND NATURAL RESOURCES (WCAMA), 12. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 117-126. ISSN 2595-6124. DOI: https://doi.org/10.5753/wcama.2021.15743.