Crianças e Propagandas no TikTok: identificando publicidade infantil na rede social TikTok
Resumo
This study addresses the identification of advertising on TikTok and its impact on children’s behavior, highlighting the growing presence of this platform in children’s routines. Considering the subtle and often disguised nature of advertising aimed at children, the work focuses on identifying and analyzing all advertising done by influencers for children on this social network. Using a machine learning-based methodology, we built a database of influencer posts by automatically classifying advertising and non-advertising content aimed at children. We applied algorithms such as Naive Bayes and Support Vector Machine to classify videos that accurately address child advertising on TikTok. The results showed that the SVM model performed best, with high accuracy and F1-Score. The research also proposes future improvements, including context analysis and the expansion of the keyword base, to enhance the detection of child advertising and protect young users of the platform.
Referências
Mohamed Amara. 2021. Navigating the Influencer Era: Unraveling the Impact on Children’s Lifestyles and Well-being. [link]
Apify. 2024. Apify. [link] Acessado: 20-03-2024.
Karla Badillo-Urquiola, Diva Smriti, Brenna McNally, Evan Golub, Elizabeth Bonsignore, and Pamela Jean Wisniewski. 2019. Stranger Danger! Social Media App Features Co-Designed with Children to Keep Them Safe Online. In Proceedings of the 18th ACM International Conference on Interaction Design and Children (Boise, ID, USA) (IDC ’19). Association for Computing Machinery, New York, NY, USA, 394–406. DOI: 10.1145/3311927.3323133
Lucas Berti. 2022. How social media influencers shape Brazilian consumption. [link]
Brasil. 1990. Código de Defesa do Consumidor. Lei no 8.078, de 11 de setembro de 1990. Dispõe sobre a proteção do consumidor e dá outras providências.
Brasil. 1990. Estatuto da Criança e do Adolescente. Lei no 8.069, de 13 de julho de 1990. Dispõe sobre o Estatuto da Criança e do Adolescente e dá outras providências.
Leo Breiman. 2001. Random Forests. Machine Learning 45 (2001), 5–32. DOI: 10.1023/A:1010933404324
Josemar Alves Caetano, Cecilia Capurucho Bouchardet, and Humberto Torres Marques-Neto. 2023. Identifying and Characterizing Child Advertising on Instagram. In Proceedings of the 3rd International Workshop on Open Challenges in Online Social Networks (Rome, Italy) (OASIS ’23). Association for Computing Machinery, New York, NY, USA, 9–13. DOI: 10.1145/3599696.3612896
Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article 27 (may 2011), 27 pages. DOI: 10.1145/1961189.1961199
KaiSiang Chong and Nathar Shah. 2022. Comparison of Naive Bayes and SVM Classification in Grid-Search Hyperparameter Tuned and Non-Hyperparameter Tuned Healthcare Stock Market Sentiment Analysis. International Journal of Advanced Computer Science and Applications 13, 12 (2022). DOI: 10.14569/IJACSA.2022.0131213
CONANDA. 2014. Resolução no 163 do Conselho Nacional dos Direitos da Criança e do Adolescente. Dispõe sobre a abusividade do direcionamento de publicidade e de comunicação mercadológica à criança e ao adolescente.
Charles Alves de Castro, Isobel O’Reilly, and Aiden Carthy. 2021. Social Media Influencers (SMIs) in Context: A Literature Review. Journal of Marketing Management 9, 2 (Dec 2021), 59–71. DOI: 10.15640/jmm.v9n2a9
Flavio Figueiredo, Felipe Giori, Guilherme Soares, Mariana Arantes, Jussara Marques Almeida, and Fabricio Benevenuto. 2020. Understanding Targeted Video-Ads in Children’s Content. In Proceedings of the 31st ACM Conference on Hypertext and Social Media (Virtual Event, USA) (HT ’20). Association for Computing Machinery, New York, NY, USA, 151–160. DOI: 10.1145/3372923.3404787
Caroline Forsey. 2022. How the Pandemic Changed Social Media: 6 Quarantine Trends Here to Stay [Data + Expert Insights]. [link]
Karla García Gil. 2022. The power of influencers in purchasing decisions. [link]
Teresa Guarda, Maria Fernanda Augusto, Jose Avelino Victor, Luis Miguel Mazon, Isabel Lopes, and Pedro Oliveira. 2021. The Impact of TikTok on Digital Marketing. In Marketing and Smart Technologies. Springer Singapore, Singapore, 35–44. [link]
Monique Lima. 2023. TikTok é a marca de rede social mais valiosa do mundo em 2023. [link]
Christopher David Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press. [link]
Ilia Markov. 2022. The Influence of TikTok on the Big 5 Social Media Platforms. [link]
Rafidah Md Noor, Sharifah Noor Sahila Syed Jamal, and Khairil Hafizzee Zakaria. 2012. Parental mobile control system for children’s internet use. In International Conference on Information Society (i-Society 2012). 511–513. [link]
Jasmine Andhini Rivai, Aimee Gian Haryanto, Kezia Tehila, and Adilla Anggraeni. 2023. The Impact of Influencer Credibility on Purchase Intention of TikTok Users. In 2023 11th International Conference on Information and Communication Technology (ICoICT). IEEE, 57–62. DOI: 10.1109/ICoICT58202.2023.10262423
David Rosenberg and Natalia Szura. 2023. How much time do kids spend on devices – playing games, watching videos, texting and using the phone? [link]
William Schendes. 2023. TikTok é a rede social que as crianças mais passam tempo diariamente. [link] Acessado: 15-09-2023.
Ruhi Sethi and Shahzia Khan. 2023. Prioritizion of Digital Influencers Attractiveness Influencing Consumer Purchase Intention Using AHP. In 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). 484–488. DOI: 10.1109/ICCIKE58312.2023.10131125
Arunkumar Sivakumar, Sudarsan Jayasingh, and Shahenaz Shaik. 2023. Social Media Influence on Students’ Knowledge Sharing and Learning: An Empirical Study. Education Sciences 13, 7 (2023). DOI: 10.3390/educsci13070745
Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. 2011. Dual coordinate descent methods for logistic regression and maximum entropy models. Mach Learn 85 (2011), 41–75. DOI: 10.1007/s10994-010-5221-8