Middleware para Aplicações Distribuídas de Vídeo com Suporte à Computação na Borda na Indústria 4.0

  • Otacílio de A. Ramos Neto IFPB
  • Rafael C. Chaves IFPB
  • Alysson P. Nascimento IFPB
  • Ruan D. Gomes IFPB

Resumo


Within the scope of Industry 4.0, computer vision is extensively employed for monitoring and control functions with stringent demands on performance and latency. A viable approach to meeting these requirements is distributed processing at the edge and in the cloud. In this context, this paper presents a middleware tailored for Industry 4.0 and distributed video applications using edge computing. A versatile communication protocol was developed, with support to both UDP and TCP, and incorporating two methods for frame delivery prioritization (either Last In, First Out or First In, First Out). Also, the protocol performs fragmentation, enabling the transmission of high-resolution images. Initial experiments have shown that the proposed middleware allows the distribution of high-resolution videos without significant overhead, while at the same time offering a high level of transparency for applications, which can be implemented as if getting the video stream from a locally connected camera.

Palavras-chave: Middleware, Distribuição de Vídeo, Edge Computing, Cloud Computing, Industria 4.0

Referências

Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. 2017. Real-Time Video Analytics: The Killer App for Edge Computing. Computer 50, 10 (2017), 58–67. DOI: 10.1109/MC.2017.3641638

Yung-Yao Chen, Yu-Hsiu Lin, Yu-Chen Hu, Chih-Hsien Hsia, Yi-An Lian, and Sin-Ye Jhong. 2022. Distributed Real-Time Object Detection Based on Edge-Cloud Collaboration for Smart Video Surveillance Applications. IEEE Access 10 (2022), 93745–93759. DOI: 10.1109/ACCESS.2022.3203053

Tamás Czimmermann, Gastone Ciuti, Mario Milazzo, Marcello Chiurazzi, Stefano Roccella, Calogero Maria Oddo, and Paolo Dario. 2020. Visual-Based Defect Detection and Classification Approaches for Industrial Applications—A SURVEY. Sensors 20, 5 (2020). DOI: 10.3390/s20051459

Marios D. Dikaiakos, Dimitrios Katsaros, Pankaj Mehra, George Pallis, and Athena Vakali. 2009. Cloud Computing: Distributed Internet Computing for IT and Scientific Research. IEEE Internet Computing 13, 5 (2009), 10–13. DOI: 10.1109/MIC.2009.103

W3C Working Draft. 2012. WebRTC 1.0: Real-Time Communication between Browsers. [link]

Anjus George and Arun Ravindran. 2019. Distributed Middleware for Edge Vision Systems. In 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT). 193–194. DOI: 10.1109/HONET.2019.8908023

Arpit Jain and Dharm Singh Jat. 2020. An Edge Computing Paradigm for Time-Sensitive Applications. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). 798–803. DOI: 10.1109/WorldS450073.2020.9210325

Samantha Luu, Arun Ravindran, Armin Danesh Pazho, and Hamed Tabkhi. 2022. VEI: a multicloud edge gateway for computer vision in IoT. In Proceedings of the 1st Workshop on Middleware for the Edge (Quebec, Quebec City, Canada) (MIDDLEWEDGE ’22). Association for Computing Machinery, New York, NY, USA, 6–11. DOI: 10.1145/3565385.3565877

Mahmoud Meribout, Asma Baobaid, Mohammed Ould Khaoua, Varun Kumar Tiwari, and Juan Pablo Pena. 2022. State of Art IoT and Edge Embedded Systems for Real-Time Machine Vision Applications. IEEE Access 10 (2022), 58287–58301. DOI: 10.1109/ACCESS.2022.3175496

R. Pantos. 2009. HTTP Live Streaming. Internet-Draft draft-pantos-http-live-streaming-02. Apple Inc. [link]

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A Transport Protocol for Real-Time Applications. [link]

M.P. Sharabayko, M.A. Sharabayko, J. Dube, JS. Kim, and JW. Kim. 2021. The SRT Protocol. [link]

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (2016), 637–646. DOI: 10.1109/JIOT.2016.2579198

Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE MultiMedia 18, 4 (2011), 62–67. DOI: 10.1109/MMUL.2011.71

Adobe Systems. 2012. Adobe Real-Time Messaging Protocol (RTMP) Specification. [link]

M. van Steen and A. S. Tanenbaum. 2023. Distributed Systems (4th ed.). [link]

Pal Varga, Jozsef Peto, Attila Franko, David Balla, David Haja, Ferenc Janky, Gabor Soos, Daniel Ficzere, Markosz Maliosz, and Laszlo Toka. 2020. 5G support for Industrial IoT Applications— Challenges, Solutions, and Research gaps. Sensors 20, 3 (2020). DOI: 10.3390/s20030828

Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dimitrios S. Nikolopoulos. 2016. Challenges and Opportunities in Edge Computing. In 2016 IEEE International Conference on Smart Cloud (SmartCloud). 20–26. DOI: 10.1109/SmartCloud.2016.18

Raphael Wagner, Mario Matuschek, Philipp Knaack, Michael Zwick, and Manuela Geiß. 2023. IndustrialEdgeML - End-to-end edge-based computer vision system for Industry 5.0. Procedia Computer Science 217 (2023), 594–603. 4th International Conference on Industry 4.0 and Smart Manufacturing. DOI: 10.1016/j.procs.2022.12.255

Longfei Zhou, Lin Zhang, and Nicholas Konz. 2023. Computer Vision Techniques in Manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems 53, 1 (2023), 105–117. DOI: 10.1109/TSMC.2022.3166397
Publicado
14/10/2024
RAMOS NETO, Otacílio de A.; CHAVES, Rafael C.; NASCIMENTO, Alysson P.; GOMES, Ruan D.. Middleware para Aplicações Distribuídas de Vídeo com Suporte à Computação na Borda na Indústria 4.0. In: BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB (WEBMEDIA), 30. , 2024, Juiz de Fora/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 215-222. DOI: https://doi.org/10.5753/webmedia.2024.242927.