FaDeRS: Fairness and Depolarization in Recommender Systems
Abstract
Recommender systems have become fundamental in modern society as they help navigate the vast amount of available data, enabling users to find information, products, or services more efficiently and personally. They directly impact how people consume data, goods, and resources. Recommender systems often lack fairness and diversity, resulting in unfair services and increased preference polarization. Solution: This work presents FaDeRS (Fairness and Depolarization in Recommender Systems), an approach aimed at increasing fairness and diversity in recommender systems. FaDeRS adjusts predictions through controlled perturbations and optimization to mitigate individual unfairness and polarization without modifying the input data. The research is related to socio-technical theory, addressing one of the socio-algorithmic problems, algorithmic discrimination. We consider a specific set of approaches to encode fair behaviors. The research applied a quantitative method with experimentation using two datasets in distinct contexts, implementing a post-processing algorithm based on the Simulated Annealing meta-heuristic. The proposed method demonstrated significant reductions in polarization (up to 78.64%) and individual unfairness (up to 33.97%), with only a small increase in the Root Mean Square Error (RMSE), indicating an improvement in the socially desirable qualities of the systems without unduly sacrificing accuracy. Notably, FaDeRS consistently outperformed a relevant benchmark methodology across both evaluated datasets. The main contribution is a mechanism that balances personalization and fairness, simultaneously addressing polarization and individual unfairness from the items’ perspective, promoting a fairer and more diverse approach to recommendation.
References
André Amaral, André Araújo, Bruno Tomazela, Tatiana Escovedo, and Marcos Kalinowski. 2023. Machine Learning Applied to the Classification of Technical Inspection Recommendations Regarding the Trend to Increase Criticality. In Proceedings of the XIX Brazilian Symposium on Information Systems (Maceió, Brazil) (SBSI ’23). Association for Computing Machinery, New York, NY, USA, 17–27. DOI: 10.1145/3592813.3592884
Alexander Beutel, Jilin Chen, Zhe Zhao, and Ed H. Chi. 2019. Fairness in Recommendation Ranking through Pairwise Comparisons. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’19). ACM, Anchorage, Alaska, USA, 2212–2220.
A. Bhargava, A. Bansal, and V. Goyal. 2022. Machine Learning–Based Detection and Sorting of Multiple Vegetables and Fruits. Food Analytical Methods 15 (2022), 228–242. DOI: 10.1007/s12161-021-02086-1
Robin Burke, Nasim Sonboli, and Aldo Ordonez-Gauger. 2018. Balanced Neighborhoods for Multi-sided Fairness in Recommendation. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency (Proceedings of Machine Learning Research, Vol. 81), Sorelle A. Friedler and Christo Wilson (Eds.). PMLR, New York University, NYC, USA, 202–214. [link]
Robin Burke, Nasim Sonboli, and Aldo Ordonez-Gauger. 2018. Fairness and Transparency in Recommendation Systems. In Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency (FAT’18). ACM, New York, NY, USA, 1–48.
Simon Caton and Christian Haas. 2024. Fairness in Machine Learning: A Survey. ACM Comput. Surv. 56, 7, Article 166 (apr 2024), 38 pages. DOI: 10.1145/3616865
L. Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K. Vishnoi. 2016. How to be Fair and Diverse? CoRR abs/1610.07183 (2016), 5. arXiv:1610.07183 [link]
Sanjay Chandrasekaran, Giulia De Pasquale, Giuseppe Belgioioso, and Florian Dörfler. 2024. Mitigating Polarization in Recommender Systems via Networkaware Feedback Optimization. arXiv:2408.16899 [eess.SY] [link]
Federico Cinus, Marco Minici, Corrado Monti, and Francesco Bonchi. 2022. The Effect of People Recommenders on Echo Chambers and Polarization. Proceedings of the International AAAI Conference on Web and Social Media 16, 1 (May 2022), 90–101. DOI: 10.1609/icwsm.v16i1.19275
Miriam Colpo, Bruno Alves, Kevin Pereira, Anna Flávia Brandão, Marilton Aguiar, and Tiago Primo. 2021. Attribute selection based on genetic and classification algorithms in the prediction of hospitalization need of COVID-19 patients. In Anais do XVII Simpósio Brasileiro de Sistemas de Informação (Uberlândia). SBC, Porto Alegre, RS, Brasil, 8 pages. [link]
Jadna Cruz, Amanda Oliveira, Diego Silva, and Frederico Durão. 2022. GRSPOI: A Point-of-Interest Recommender Systems for Groups Using Diversification. In Anais do XVIII Simpósio Brasileiro de Sistemas de Informação (Curitiba). SBC, Porto Alegre, RS, Brasil, 8 pages. [link]
S. Dargan, M. Kumar, and A. Mittal et al. 2024. Handwriting-based gender classification using machine learning techniques. Multimedia Tools and Applications 83 (2024), 19871–19895. DOI: 10.1007/s11042-023-16354-1
Joselito de Sousa Júnior, Vinícius Machado, Rodrigo Souza Veras, Roney de Sales Santos, Bruno Alves de Lima, Aline Leal Silva, Francisco da Silva Sousa, and Francisco Imperes Filho. 2022. Public Administration Suppliers Classification Model Based on Supervised Machine Learning. In Anais do XVIII Simpósio Brasileiro de Sistemas de Informação (Curitiba). SBC, Porto Alegre, RS, Brasil, 8 pages. [link]
Yashar Deldjoo, Vito Walter Anelli, Hamed Zamani, Alejandro Bellogín, and T. D. Noia. 2021. A flexible framework for evaluating user and item fairness in recommender systems. User Modeling and User-Adapted Interaction 31 (2021), 457 – 511. [link]
Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Rich Zemel. 2011. Fairness Through Awareness. arXiv:1104.3913 [cs.CC] [link]
Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. 2011. Fairness Through Awareness. CoRR abs/1104.3913 (2011), 214–226. arXiv:1104.3913 [link]
Michael D. Ekstrand, Anubrata Das, Robin Burke, and Fernando Diaz. 2022. Fairness in Information Access Systems. Foundations and Trends® in Information Retrieval 16, 1–2 (2022), 1–177. DOI: 10.1561/1500000079
Michael D. Ekstrand, Maria Tian, Juyeon Maeng Azpiazu, Robin Burke, John D. Ekstrand, and Augustine Anuyah. 2018. All the Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness. In Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency. PMLR, New York, NY, USA, 172–186.
G. Emirhüseyinoğlu, M. Shahhosseini, G. Hu, et al. 2023. Validation of scenario generation for decision-making using machine learning prediction models. Optim Lett 17 (2023), 520–528. DOI: 10.1007/s11590-023-02023-7
Felipe Faria, Álvaro Jr., and Luiz Merschmann. 2015. Predição de Rankings de Artistas por Meio de Regressão. In Anais do XI Simpósio Brasileiro de Sistemas de Informação (Goiânia). SBC, Porto Alegre, RS, Brasil, 95–102. DOI: 10.5753/sbsi.2015.5805
Golnoosh Farnadi, Pigi Kouki, Spencer K. Thompson, Sriram Srinivasan, and Lise Getoor. 2018. A Fairness-aware Hybrid Recommender System. arXiv:1809.09030 [cs.IR] [link]
X. Feng, Y. Cai, and R. Xin. 2023. Optimizing diabetes classification with a machine learning-based framework. BMC Bioinformatics 24 (2023), 428. DOI: 10.1186/s12859-023-05467-x
Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2016. On the (im)possibility of fairness. arXiv:1609.07236 [cs.CY] [link]
Avijit Ghosh, Ritam Dutt, and Christo Wilson. 2021. When Fair Ranking Meets Uncertain Inference. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21). ACM, Virtual Event, Canada, 1033–1043. DOI: 10.1145/3404835.3462850
Wesckley Faria Gomes and Methanias Colaço. 2022. Applications of Artificial Intelligence for Auditing and Classification of Incongruent Descriptions in Public Procurement. In Proceedings of the XVIII Brazilian Symposium on Information Systems (Curitiba, Brazil) (SBSI ’22). Association for Computing Machinery, New York, NY, USA, Article 40, 8 pages. DOI: 10.1145/3535511.3535551
F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015), 1–19.
Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2018. Recommendation Independence. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency (Proceedings of Machine Learning Research, Vol. 81), Sorelle A. Friedler and Christo Wilson (Eds.). PMLR, New York, NY, USA, 187–201. [link]
Ni Li and Yinshui Xia. 2024. Movie recommendation based on ALS collaborative filtering recommendation algorithm with deep learning model. Entertainment Computing 51 (2024), 100715. DOI: 10.1016/j.entcom.2024.100715
Rodrigo Lima, Giovanni Comarella, Fabiano Belém, and Julio Reis. 2022. Justiça em Sistemas de Recomendação: Uma Análise de Técnicas de Regularização. In Anais do XXXVII Simpósio Brasileiro de Bancos de Dados (Búzios). SBC, Porto Alegre, RS, Brasil, 177–189. DOI: 10.5753/sbbd.2022.224352
Nícolas Terra Maia and Tiago Cruz de França. 2023. Recomendação de Conteúdo Baseada em Localização e Interesse: uma aplicação com o CidadeSocial. In Anais Estendidos do XXXVIII Simpósio Brasileiro de Bancos de Dados (BeloHorizonte/MG). SBC, Porto Alegre, RS, Brasil, 71–77. DOI: 10.5753/sbbd_estendido.2023.233535
Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2022. A Survey on Bias and Fairness in Machine Learning. arXiv:1908.09635 [cs.LG] [link]
Rishabh Mehrotra, James McInerney, Hugues Bouchard, Mounia Lalmas, and Fernando Diaz. 2018. Towards a Fair Marketplace: Counterfactual Evaluation of the Trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, Singapore, 2243–2252. DOI: 10.1145/3269206.3272027
Juliano Menzen and Kleinner Oliveira. 2023. 4Experts: A Task Recommendation Approach Using Machine Learning and Biometric Data. In Anais do XIX Simpósio Brasileiro de Sistemas de Informação (Maceió/AL). SBC, Porto Alegre, RS, Brasil, 1–8. [link]
Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee, and Yuekai Sun. 2020. Two simple ways to learn individual fairness metrics from data. In Proceedings of the 37th International Conference on Machine Learning (ICML’20). JMLR.org, Virtual, Article 658, 11 pages.
Tien T. Nguyen, Philip M. Hui, F. Maxwell Harper, Loren Terveen, and Joseph A. Konstan. 2014. Exploring the Filter Bubble: The Effect of Using Recommender Systems on Content Diversity. In Proceedings of the 23rd International Conference on World Wide Web. Association for Computing Machinery, Seoul, South Korea, 677–686. DOI: 10.1145/2566486.2568012
Eli Pariser. 2011. The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think. Penguin Press, New York, NY.
Bruno Prece, Edson Pacheco, Rodolfo Barros, and Sylvio Barbon. 2019. Improvements on diagnostic assessment questionnaires of Maturity Level Management with feature selection. In Anais do XV Simpósio Brasileiro de Sistemas de Informação (Aracajú). SBC, Porto Alegre, RS, Brasil, 48–55. [link]
Bashir Rastegarpanah, Krishna P. Gummadi, and Mark Crovella. 2019. Fighting Fire with Fire: Using Antidote Data to Improve Polarization and Fairness of Recommender Systems. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (Melbourne VIC, Australia) (WSDM ’19). Association for Computing Machinery, New York, NY, USA, 231–239. DOI: 10.1145/3289600.3291002
Faria Sajjad, Muhammad Rashid, Afia Zafar, Kainat Zafar, Benish Fida, Ali Arshad, Saman Riaz, Ashit Kumar Dutta, and Joel J.P.C. Rodrigues. 2023. An efficient hybrid approach for optimization using simulated annealing and grasshopper algorithm for IoT applications. Discover Internet of Things 3, 1 (Dec. 2023), 19 pages. DOI: 10.1007/s43926-023-00036-3 Publisher Copyright: © The Author(s) 2023..
Everton Santana, Saulo Mastelini, and Sylvio Jr. 2017. Deep Regressor Stacking for Air Ticket Prices Prediction. In Anais do XIII Simpósio Brasileiro de Sistemas de Informação (Lavras). SBC, Porto Alegre, RS, Brasil, 25–31. DOI: 10.5753/sbsi.2017.6022
Paulo Santos, Karina Delgado, Marcelo Lauretto, and Marcio Ribeiro. 2017. Revisão Sistemática da Literatura sobre ranking de Relacionamentos naWeb Semântica. In Anais do XIII Simpósio Brasileiro de Sistemas de Informação (Lavras). SBC, Porto Alegre, RS, Brasil, 32–39. DOI: 10.5753/sbsi.2017.6023
A. Sikora, T. Zhang, and D.J. Murphy et al. 2023. Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU. Scientific Reports 13 (2023), 19654. DOI: 10.1038/s41598-023-46735-3
Adriano Souza, Reinaldo Fortes, and Joubert Lima. 2017. OLAP Textual com Múltiplas Hierarquias de Tópicos e Rankings Segmentados. In Anais do XIII Simpósio Brasileiro de Sistemas de Informação (Lavras). SBC, Porto Alegre, RS, Brasil, 480–487. DOI: 10.5753/sbsi.2017.6078
Ediana Souza, Daniel Lichtnow, and Isabela Gasparini. 2022. Estratégia de Pósprocessamento Aplicada a um Sistema de Recomendação de Artigos para a Melhora da Diversidade. In BraSNAM 2022 - XI Brazilian Workshop on Social Network Analysis and Mining (Niterói). Sociedade Brasileira de Computação, Sociedade Brasileira de Computação, Porto Alegre, RS, Brasil, 216–221. DOI: 10.5753/brasnam.2022.222805
Luan De Souza and Marcelo Manzato. 2023. A User Study on Explanations with Different Levels of Detail in Recommender Systems. In Anais do XXIX Simpósio Brasileiro de Sistemas Multimídia e Web (Ribeirão Preto/SP). SBC, Porto Alegre, RS, Brasil, 208–212. DOI: 10.1145/3617023.3617051
Dominik Spohr. 2017. Fake News and Ideological Polarization: Filter Bubbles and Selective Exposure on Social Media. Business Information Review 34, 3 (2017), 150–160. DOI: 10.1177/0266382117722446
Harald Steck. 2018. Calibrated recommendations. In Proceedings of the 12th ACM Conference on Recommender Systems (Vancouver, British Columbia, Canada) (RecSys ’18). Association for Computing Machinery, New York, NY, USA, 154–162. DOI: 10.1145/3240323.3240372
Jonathan Stray. 2021. Designing Recommender Systems to Depolarize. arXiv:2107.04953 [cs.IR] [link]
V. A. Sudakov and Y. P. Titov. 2023. Pandemic Forecasting by Machine Learning in a Decision Support Problem. Math Models Comput Simul 15 (2023), 520–528. DOI: 10.1134/S2070048223030171
Jiakai Tang, Shiqi Shen, Zhipeng Wang, Zhi Gong, Jingsen Zhang, and Xu Chen. 2023. When Fairness meets Bias: a Debiased Framework for Fairness aware Top-N Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems (Singapore, Singapore) (RecSys ’23). Association for Computing Machinery, New York, NY, USA, 200–210. DOI: 10.1145/3604915.3608770
Antonio Vale, Pedro Santos, Hélcio Soares, and Raimundo Moura. 2023. Automatic Classification of Public Expenses in the Fight against COVID-19: A Case Study of TCE/PI. In Anais do XIX Simpósio Brasileiro de Sistemas de Informação (Maceió/AL). SBC, Porto Alegre, RS, Brasil, 221–228. [link]
R. Vashistha, Z. Noor, and S. Dasgupta et al. 2023. Application of statistical machine learning in biomarker selection. Scientific Reports 13 (2023), 18331. DOI: 10.1038/s41598-023-45323-9
YifanWang,Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2023. A Survey on the Fairness of Recommender Systems. ACM Trans. Inf. Syst. 41, 3, Article 52 (feb 2023), 43 pages. DOI: 10.1145/3547333
Heitor Werneck, Nicollas Silva, Carlos Mito, Adriano Pereira, Diego Dias, Elisa Albergaria, and Leonardo Rocha. 2022. Introducing Contextual Information in an Ensemble Recommendation System for Fashion Domains. In Anais do XXVIII Simpósio Brasileiro de Sistemas Multimídia e Web (Curitiba). SBC, Porto Alegre, RS, Brasil, 237–244. DOI: 10.1145/3539637.3557058
Chuhan Wu, Fangzhao Wu, Xiting Wang, Yongfeng Huang, and Xing Xie. 2021. FairRec: Fairness-aware News Recommendation with Decomposed Adversarial Learning. arXiv:2006.16742 [cs.IR] [link]
Yao Wu, Jian Cao, Guandong Xu, and Yudong Tan. 2021. TFROM: A Twosided Fairness-Aware Recommendation Model for Both Customers and Providers. arXiv:2104.09024 [cs.AI] [link]
Bin Xia, Junjie Yin, Jian Xu, and Yun Li. 2019. WE-Rec: A fairness-aware reciprocal recommendation based on Walrasian equilibrium. Knowledge-Based Systems 182 (2019), 104857. DOI: 10.1016/j.knosys.2019.07.028
J. Xue, W. Yao, and S. Xiang. 2024. Machine learning embedded EM algorithms for semiparametric mixture regression models. Computational Statistics 22 (2024), 159–171. DOI: 10.1007/s00180-024-01482-5
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. 2017. Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment. In Proceedings of the 26th International Conference on World Wide Web (Perth, Australia) (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 1171–1180. DOI: 10.1145/3038912.3052660
Meike Zehlike, Tom Sühr, Ricardo Baeza-Yates, Francesco Bonchi, Carlos Castillo, and Sara Hajian. 2022. Fair Top-k Ranking with multiple protected groups. Processing & Management 59, 1 (2022), 102707. DOI: 10.1016/j.ipm.2021.102707
Wenbin Zhang, Zichong Wang, Juyong Kim, Cheng Cheng, Thomas Oommen, Pradeep Ravikumar, and Jeremy Weiss. 2023. Individual Fairness under Uncertainty. arXiv:2302.08015 [cs.LG] [link]
Wenbin Zhang and Jeremy C.Weiss. 2022. Longitudinal Fairness with Censorship. arXiv:2203.16024 [cs.LG] [link]
Yong Zheng, Tanaya Dave, Neha Mishra, and Harshit Kumar. 2018. Fairness In Reciprocal Recommendations: A Speed-Dating Study. In Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization (Singapore, Singapore) (UMAP ’18). Association for Computing Machinery, New York, NY, USA, 29–34. DOI: 10.1145/3213586.3226207
Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-Aware Tensor-Based Recommendation. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (Torino, Italy) (CIKM ’18). Association for Computing Machinery, New York, NY, USA, 1153–1162. DOI: 10.1145/3269206.3271795
