Análise de Sobrevivência: um estudo de caso em um Curso de Sistemas de Informação
Resumo
A evasão do ensino superior é um problema grave que tem sido investigado há décadas e causa grandes danos aos indivíduos, instituições de ensino e à sociedade como um todo. Este artigo apresenta um estudo de caso sobre a aplicação da técnica de análise de sobrevivência combinada com a construção de modelos preditivos na identificação dos elementos determinantes da evasão em um curso de graduação em Sistemas de Informação de uma instituição pública de ensino superior no Brasil. Métodos de mineração de dados educacionais e modelagem probabilística foram aplicados aos dados dos alunos para modelar a conclusão esperada dos alunos do curso, semestre a semestre. Os resultados da análise de sobrevivência indicam que o maior risco de evasão está nos semestres iniciais do curso, enquanto a identificação das características determinantes da evasão deixa claro que as disciplinas dos dois primeiros semestres retêm cerca de 50% da população estudantil.
Referências
Ameri, S., Fard, M. J., Chinnam, R. B., and Reddy, C. K. (2016). Survival analysis based framework for early prediction of student dropouts. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pages 903–912, New YorkNYUnited States. ACM.
Bonaldo, L. and Pereira, L. (2016). Dropout: Demographic profile of brazilian university students. Procedia Social and Behavioral Sciences, 228:138–143.
Carminati, G., Augusto, R., Dallabrida, N., and Teive, R. (2020). Mineração de dados educacionais visando a identificação da evasão no ensino superior. In Anais do Computer on the Beach (CoTB 2020), volume 11, pages 461–468.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., et al. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4):1–4.
Chung, C.-F., Schmidt, P., and Witte, A. D. (1991). Survival analysis: A survey. Journal of Quantitative Criminology, 7(1):59–98.
Costa, F. J. d., Bispo, M. d. S., and Pereira, R. d. C. d. F. (2018). Dropout and retention of undergraduate students in management: a study at a brazilian federal university. RAUSP Management Journal, 53:74–85.
Davidson-Pilon, C. (2019). lifelines: survival analysis in python. Journal of Open Source Software, 4(40):1317.
de Oliveira Júnior, J. G., Noronha, R. V., and Kaestner, C. A. A. (2016). Criação e seleção de atributos aplicados na previsão da evasão de curso em alunos de graduação. In Anais do Computer on the Beach (CoTB 2016), pages 061–070.
Ferreira, J. C. and Patino, C. M. (2016). What is survival analysis, and when should i use it? Jornal Brasileiro de Pneumologia, 42(1):77–77.
Franco, J. J., de Almeida Miranda, F. L., Stiegler, D., Dantas, F. R., Brancher, J. D., and do Carmo Nogueira, T. (2020). Usando mineração de dados para identificar fatores mais importantes do enem dos últimos 22 anos. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, pages 1112–1121. SBC.
Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., and Liao, S. N. (2018). Predicting academic performance: a systematic literature review. In Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, pages 175–199.
Kumar, M., Singh, A., and Handa, D. (2017). Literature survey on educational dropout prediction. International Journal of Education and Management Engineering, 7(2):8.
Nagy, M. and Molontay, R. (2018). Predicting dropout in higher education based on secondary school performance. In 2018 IEEE 22nd international conference on intelligent engineering systems (INES), pages 000389–000394. IEEE.
Olaya, D., Vásquez, J., Maldonado, S., Miranda, J., and Verbeke, W. (2020). Uplift modeling for preventing student dropout in higher education. Decision Support Systems, page 113320.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
Saccaro, A., França, M. T. A., and Jacinto, P. d. A. (2019). Fatores associados à evasão no ensino superior brasileiro: um estudo de análise de sobrevivência para os cursos das áreas de ciência, matemática e computação e de engenharia, produção e construção em instituições públicas e privadas. Estudos Econômicos (São Paulo), 49:337–373.
Silva, Filho, R. L. L., Motejunas, P. R., Hipólito, O., and Lobo, M. B. d. C. M. (2007). A evasão no ensino superior brasileiro. Cadernos de pesquisa, 37(132):641–659.
Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. Review of Educational Research, 45(1):89–125.
Wang, P., Li, Y., and Reddy, C. K. (2019). Machine learning for survival analysis: A survey. ACM Computing Surveys (CSUR), 51(6):1–36.
Zhao, L., Lee, S., and Jeong, S.-P. (2021). Decision tree application to classification problems with boosting algorithm. Electronics, 10(16).