Comparison of Computing Course Curricula Based on Hierarchical Text Clustering
Abstract
Comparing curricula allows an evaluation of the quality of the courses and programs in a university; however, this comparison is often done manually. In this paper, it is proposed an approach based on hierarchical clustering of texts to help in the task of comparing curricula. A case study was done using curricula from computing undergraduate courses from Peruvian and Brazilian universities. The results show that the approach proposed allows to discover hidden relations between curricula.
References
Do Prado, H. A. and Ferneda, E. (2007). Emerging Technologies of Text Mining: Techniques and Applications. Information Science Reference (an imprint of IGI Global), Hershey, PA.
Ebecken, N. F. F., Lopes, M. C. S., and de Aragão Costa, M. C. (2003). Mineração de Textos. In Rezende, S. O., editor, Sistemas Inteligentes Fundamentos e Aplicações, chapter 13, pages 338–370. Manole.
Manning, C. D., Raghavan, P., and Schtze, H. (2008). Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA.
Metz, J. (2006). Interpretação de clusters gerados por algoritmos de clustering hierárquico. Master’s thesis, Instituto de Ciências Matemáticas e de Computação - USP - São Carlos.
Pereira, L. Z., de Albuquerque, J. P., and de S. Coelho, F. (2010). Uma Análise da Oferta e Abordagem Curricular dos Cursos de Bacharelado em Sistemas de Informação no Brasil. In XVIII Workshop de Educação em Computação (WEI 2010), Anais do XXX Congresso da Sociedade Brasileira de Computação - CSBC 2010, pages 897–906.
Prietch, S. S. and Pazeto, T. A. (2010). Mapeamento de Cursos de Licenciatura em Computação seguido de Proposta de Padronização de Matriz Curricular. In XVIII Workshop de Educação em Computação (WEI 2010), Anais do XXX Congresso da Sociedade Brasileira de Computação CSBC 2010, pages 921–930.
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Soares, M. V., Prati, R. C., and Monard, M. C. (2008). PreTexT II: Descrição da Reestruturação da Ferramenta de Pre-Processamento de Textos. Technical Report 333, ICMC-USP, São Carlos - SP.
Srivastava, A. and Sahami, M. (2009). Text Mining: Classification, Clustering, and Applications. Chapman & Hall/CRC, 1st edition.
Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Cluster Analysis: Basic Concepts and Algorithms. In Introduction to Data Mining, chapter 8, pages 487–568. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.
Xu, R. and Wunsch, D. C. (2008). Hierarchical Clustering. In Clustering, chapter 3, pages 31–62. John Wiley & Sons, Inc.
Zhao, Y., Karypis, G., and Fayyad, U. (2005). Hierarchical Clustering Algorithms for Document Datasets. Data Mining Knowledge Discovery, 10:141–168.
Zheng, Y., Cheng, X., Huang, R., and Man, Y. (2006). A Comparative Study on Text Clustering Methods. In Proceedings of the Second International Conference on Advanced Data Mining and Applications, ADMA 2006, pages 644–651, Xi’An, China.
