Misconceptions em programação introdutória: existe associação com perfil sociodemográfico?
Resumo
Compreender os desafios enfrentados por estudantes iniciantes em programação é essencial para aprimorar o ensino na área. Este estudo investiga a relação entre misconceptions em programação e perfis sociodemográficos de estudantes universitários matriculados em cursos fora da área de Computação. Utilizando dados de submissões em juízes online, foram analisados padrões de código e suas associações com indicadores sociodemográficos, tais como: curso de origem, experiência prévia e desempenho acadêmico. Os resultados apontam diferenças significativas preliminares na ocorrência de misconceptions entre os perfis. Esses achados, ainda que limitados, reforçam a importância de estratégias pedagógicas adaptadas a perfis de estudantes, mediante validação em estudos futuros com amostras maiores e métodos automatizados de análise.Referências
Araújo, A., Filho, D. L. Z., Harada, E., Oliveira, T., Carvalho, L. S. G., Pereira, F. D., and Oliveira, D. B. F. (2021). Mapeamento e análise empírica de misconceptions comuns em avaliações de introdução à programação. In Anais do Simpósio Brasileiro de Educação em Computação, pages 123–131, Porto Alegre, RS, Brasil. SBC.
Bosse, Y., Wiese, I. S., Silva, M. A. G., Lago, N., Brandão, L. O., Redmiles, D., Kon, F., and Gerosa, M. A. (2021). Catalogs of C and Python Antipatterns by CS1 Students. Technical report, Department of Computer Science (IME), University of São Paulo (USP).
Caceffo, R., França, B., Gama, G., Benatti, R., Aparecida, T., Caldas, T., and Azevedo, R. (2017). An antipattern documentation about misconceptions related to an introductory programming course in C. In Technical Report 17-15, page 42. Institute of Computing, University of Campinas.
Casiraghi, B., Almeida, L. S., Boruchovitch, E., and Aragão, J. C. S. (2020). Rendimento acadêmico no ensino superior: variáveis pessoais e socioculturais do estudante. Revista Práxis, 12(24):95–104.
Ettles, A., Luxton-Reilly, A., and Denny, P. (2018). Common logic errors made by novice programmers. In Proceedings of the 20th Australasian Computing Education Conference, ACE ’18, page 83–89, New York, NY, USA. Association for Computing Machinery.
Gama, G., Caceffo, R., Souza, R., Bennati, R., Aparecida, T., Garcia, I., and Azevedo, R. (2018). An antipattern documentation about misconceptions related to an introductory programming course in Python. Institute of Computing, University of Campinas, Tech. Rep. IC-18-19, page 106.
Henley, A., Ball, J., Klein, B., Rutter, A., and Lee, D. (2021). An Inquisitive Code Editor for Addressing Novice Programmers’ Misconceptions of Program Behavior. In International Conference on Software Engineering, pages 165–170. IEEE Computer Society.
Lewis, C. M., Clancy, M. J., and Vahrenhold, J. (2019). Student knowledge and misconceptions. In Fincher, S. A. and Robins, A. V., editors, The Cambridge Handbook of Computing Education Research, The Cambridge Handbook of Computing Education Research, pages 773–800. Cambridge University Press.
Lima, M. A., Carvalho, L. S., Oliveira, E. H., Oliveira, D. B., and Pereira, F. D. (2021). Uso de atributos de código para classificar a dificuldade de questões de programação em juízes online. Revista Brasileira de Informática na Educação, 29:1137–1157.
Lopes, A. D. (2017). Affirmative action in Brazil: how students’ field of study choice reproduces social inequalities. Studies in Higher Education, 42(12):2343–2359.
Qian, Y. and Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A literature review. ACM Transactions on Computing Education (TOCE), 18(1):1–24.
Silva, E. P., Caceffo, R., and Azevedo, R. (2023a). When Test Cases Are Not Enough: Identification, Assessment, and Rationale of Misconceptions in Correct Code (MC³). Revista Brasileira de Informática na Educação, 31:1165–1199.
Silva, E. P., Caceffo, R. E., and Azevedo, R. (2023b). Passar nos casos de teste é suficiente? Identificação e análise de problemas de compreensão em códigos corretos. In Simpósio Brasileiro de Educação em Computação (EDUCOMP), pages 119–129. SBC.
Silveira Filho, A. N., Passos, V. A., Carvalho, L. S. G., Oliveira, E. H. T., Fernandes, D., and Nakamura, F. G. (2025). Estudo sobre o surgimento e evolução de misconceptions em uma disciplina de introdução à programação. In Anais do V Simpósio Brasileiro de Educação em Computação (EDUCOMP 2025), pages 153–164. Sociedade Brasileira de Computação (SBC).
Sorva, J. (2023). Misconceptions and the beginner programmer. In Sentance, S., Barendsen, E., Howard, N. R., and Schulte, C., editors, Computer science education: Perspectives on teaching and learning in school, pages 259–273. Bloomsbury, 2 edition.
Souza, D. M., Batista, M. H. S., and Barbosa, E. F. (2016). Problemas e dificuldades no ensino e na aprendizagem de programação: Um mapeamento sistemático. Revista Brasileira de Informática na Educação, 24:39–52.
Watson, C. and Li, F. W. (2014). Failure rates in introductory programming revisited. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education, ITiCSE ’14, pages 39–44, New York, NY, USA. Association for Computing Machinery.
Bosse, Y., Wiese, I. S., Silva, M. A. G., Lago, N., Brandão, L. O., Redmiles, D., Kon, F., and Gerosa, M. A. (2021). Catalogs of C and Python Antipatterns by CS1 Students. Technical report, Department of Computer Science (IME), University of São Paulo (USP).
Caceffo, R., França, B., Gama, G., Benatti, R., Aparecida, T., Caldas, T., and Azevedo, R. (2017). An antipattern documentation about misconceptions related to an introductory programming course in C. In Technical Report 17-15, page 42. Institute of Computing, University of Campinas.
Casiraghi, B., Almeida, L. S., Boruchovitch, E., and Aragão, J. C. S. (2020). Rendimento acadêmico no ensino superior: variáveis pessoais e socioculturais do estudante. Revista Práxis, 12(24):95–104.
Ettles, A., Luxton-Reilly, A., and Denny, P. (2018). Common logic errors made by novice programmers. In Proceedings of the 20th Australasian Computing Education Conference, ACE ’18, page 83–89, New York, NY, USA. Association for Computing Machinery.
Gama, G., Caceffo, R., Souza, R., Bennati, R., Aparecida, T., Garcia, I., and Azevedo, R. (2018). An antipattern documentation about misconceptions related to an introductory programming course in Python. Institute of Computing, University of Campinas, Tech. Rep. IC-18-19, page 106.
Henley, A., Ball, J., Klein, B., Rutter, A., and Lee, D. (2021). An Inquisitive Code Editor for Addressing Novice Programmers’ Misconceptions of Program Behavior. In International Conference on Software Engineering, pages 165–170. IEEE Computer Society.
Lewis, C. M., Clancy, M. J., and Vahrenhold, J. (2019). Student knowledge and misconceptions. In Fincher, S. A. and Robins, A. V., editors, The Cambridge Handbook of Computing Education Research, The Cambridge Handbook of Computing Education Research, pages 773–800. Cambridge University Press.
Lima, M. A., Carvalho, L. S., Oliveira, E. H., Oliveira, D. B., and Pereira, F. D. (2021). Uso de atributos de código para classificar a dificuldade de questões de programação em juízes online. Revista Brasileira de Informática na Educação, 29:1137–1157.
Lopes, A. D. (2017). Affirmative action in Brazil: how students’ field of study choice reproduces social inequalities. Studies in Higher Education, 42(12):2343–2359.
Qian, Y. and Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A literature review. ACM Transactions on Computing Education (TOCE), 18(1):1–24.
Silva, E. P., Caceffo, R., and Azevedo, R. (2023a). When Test Cases Are Not Enough: Identification, Assessment, and Rationale of Misconceptions in Correct Code (MC³). Revista Brasileira de Informática na Educação, 31:1165–1199.
Silva, E. P., Caceffo, R. E., and Azevedo, R. (2023b). Passar nos casos de teste é suficiente? Identificação e análise de problemas de compreensão em códigos corretos. In Simpósio Brasileiro de Educação em Computação (EDUCOMP), pages 119–129. SBC.
Silveira Filho, A. N., Passos, V. A., Carvalho, L. S. G., Oliveira, E. H. T., Fernandes, D., and Nakamura, F. G. (2025). Estudo sobre o surgimento e evolução de misconceptions em uma disciplina de introdução à programação. In Anais do V Simpósio Brasileiro de Educação em Computação (EDUCOMP 2025), pages 153–164. Sociedade Brasileira de Computação (SBC).
Sorva, J. (2023). Misconceptions and the beginner programmer. In Sentance, S., Barendsen, E., Howard, N. R., and Schulte, C., editors, Computer science education: Perspectives on teaching and learning in school, pages 259–273. Bloomsbury, 2 edition.
Souza, D. M., Batista, M. H. S., and Barbosa, E. F. (2016). Problemas e dificuldades no ensino e na aprendizagem de programação: Um mapeamento sistemático. Revista Brasileira de Informática na Educação, 24:39–52.
Watson, C. and Li, F. W. (2014). Failure rates in introductory programming revisited. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education, ITiCSE ’14, pages 39–44, New York, NY, USA. Association for Computing Machinery.
Publicado
20/07/2025
Como Citar
PASSOS, Victor Araújo; SILVEIRA FILHO, Airton Nascimento; NAKAMURA, Fabíola Guerra; OLIVEIRA, Elaine Harada Teixeira; OLIVEIRA, David Fernandes; CARVALHO, Leandro Silva Galvão.
Misconceptions em programação introdutória: existe associação com perfil sociodemográfico?. In: WORKSHOP SOBRE EDUCAÇÃO EM COMPUTAÇÃO (WEI), 33. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 1426-1437.
ISSN 2595-6175.
DOI: https://doi.org/10.5753/wei.2025.9417.
