MANNA-WUI: Um nó sensor versátil para a Internet das Coisas

  • Wuigor Ivens Siqueira Bine Universidade Estadual de Maringá
  • Linnyer Ruiz Universidade Estadual de Maringá

Resumo


O objetivo deste trabalho é apresentar e avaliar a performance do dispositivo MANNA-WUI nos ambientes urbanos e não urbanos em termos da distância máxima alcançada para transmissão de dados e consumo energético. Este dispositivo é um nó sensor genérico que fornece maior capacidade de processamento e utiliza tecnologia LoRa para transmissões de longa distância. Ele baseia-se nos desafios da área de Internet das Coisas, que envolvem a instalação de objetos inteligentes em áreas não urbanas, e a pouca capacidade de processamento nos existentes. Os resultados dos testes realizados foram satisfatórios para transmissão de dados a longa distância em áreas não-urbanas chegando a 18 Km e seu consumo energético no modo sleep de 13,2 µW.

Palavras-chave: IoT, RSSF, LoRA, Nó Sensor

Referências

Adam, A. H., Tamilkodi, R., and Madhavi, K. V. (2019). Low-cost green power predictive farming using iot and cloud computing. In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), pages 1–5.

Addabbo, T., Fort, A., Mecocci, A., Mugnaini, M., Parrino, S., Pozzebon, A., and Vignoli,V. (2019). A lora-based iot sensor node for waste management based on a customized ultrasonic transceiver. In 2019 IEEE Sensors Applications Symposium (SAS), pages1–6.

Baldovino, R. G., Valenzuela, I. C., and Dadios, E. P. (2018).Implementation of a low-power wireless sensor network for smart farm applications. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM), pages1–5.

BOSCH (2018). BME280 - Combined Humidity and Pressure Sensor. [Online; accessed15-August-2019].

Bouguera, T., Diouris, J., Chaillout, J., and Andrieux, G. (2018). Energy consumption modeling for communicating sensors using lora technology. In 2018 IEEE Conferenceon Antenna Measurements Applications (CAMA), pages 1–4.

Dallas Semiconductor (2009). Battery Monitor. [Online; accessed 15-August-2019].

Derhamy, H., Eliasson, J., Delsing, J., and Priller, P. (2015). A survey of commercialframeworks for the internet of things. In 2015 IEEE 20th Conference on EmergingTechnologies Factory Automation (ETFA), pages 1–8.

Duangsuwan, S., Takarn, A., Nujankaew, R., and Jamjareegulgarn, P. (2018). A study ofair pollution smart sensors lpwan via nb-iot for thailand smart cities 4.0. In 2018 10thInternational Conference on Knowledge and Smart Technology (KST), pages 206–209.

Edward Jero, S. and Balaji Ganesh, A. (2011). Pic18lf4620 based customizable wireless sensor node to detect hazardous gas pipeline leakage. In 2011 International Conferenceon Emerging Trends in Electrical and Computer Technology, pages 563–566.

ESPRESSIF (2019). ESP32 Series. [Online; accessed 08-September-2019].

Fitriawan, H., Susanto, M., Arifin, A. S., Mausa, D., and Trisanto, A. (2017). Zigbeebased wireless sensor networks and performance analysis in various environments. In 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering, pages 272–275.

Gartner (2018). Gartner identifies top 10 strategic iot technologies and trends. [Online;accessed 20-March-2020].

InvenSense (2016). MPU-9250 - Product Specification. [Online; accessed 15-August-2019].

Jörke, P., Falkenberg, R., and Wietfeld, C. (2018). Power consumption analysis of nb-iotand emtc in challenging smart city environments. In 2018 IEEE Globecom Workshops(GC Wkshps), pages 1–6.

Kjellby, R., Cenkeramaddi, L. R., Johnsrud, T. E., Jevne, G., Løtveit, S. E., BeferullLozano, B., and Joshi, S. (2018). Design and prototype implementation of long-rangeself-powered wireless iot devices. In 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), pages 215–218.

Lee, I. and Lee, K. (2015). The internet of things (iot): Applications, investments, and challenges for enterprises. Business Horizons, 58(4):431 – 440.

Lin, P. and Wang, K. (2017). A smart sensor node design for efficient communicationin zigbee wireless sensor networks. In 2017 International Conference on Information,Communication and Engineering (ICICE), pages 366–369.

Magno, M., Aoudia, F. A., Gautier, M., Berder, O., and Benini, L. (2017). Wulora: Anenergy efficient iot end-node for energy harvesting and heterogeneous communication. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pages1528–1533.

Mayer, P., Magno, M., Brunner, T., and Benini, L. (2019). Lora vs. lora: In-field evaluation and comparison for long-lifetime sensor nodes. In 2019 IEEE 8th InternationalWorkshop on Advances in Sensors and Interfaces (IWASI), pages 307–311.

SEMTECH (2019). Datasheet - SX1276/77/78/79 - 137 MHz to 1020 MHz Low PowerLong Range Transceiver. [Online; accessed 08-September-2019].

Serikul, P., Nakpong, N., and Nakjuatong, N. (2018). Smart farm monitoring via theblynk iot platform : Case study: Humidity monitoring and data recording. In 2018 16th International Conference on ICT and Knowledge Engineering (ICT KE), pages1–6.

Tokmakov, D., Asenov, S., and Dimitrov, S. (2019). Research and development of ultra-low power lorawan sensor node. In 2019 IEEE XXVIII International Scientific Conference Electronics (ET), pages 1–4.

Wang, J., Su, J., and Hua, R. (2019). Design of a smart independent smoke sense systembased on nb-iot technology. In 2019 International Conference on Intelligent Transpor-tation, Big Data Smart City (ICITBS), pages 397–400.
Publicado
30/06/2020
BINE, Wuigor Ivens Siqueira; RUIZ, Linnyer. MANNA-WUI: Um nó sensor versátil para a Internet das Coisas. In: WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE COMUNICAÇÃO (WPERFORMANCE), 19. , 2020, Cuiabá. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 109-120. ISSN 2595-6167. DOI: https://doi.org/10.5753/wperformance.2020.11110.