Vector Operations Applied in a Library of Bio-inspired Algorithms
Abstract
Bio-inspired algorithms are based on the collective behavior of social organisms and are used to solve optimization problems. In this work, concurrency is applied in vector units using Single Instruction Multiple Data (SIMD)architectures in the bio-inspired library developed by the authors, in order to decrease the execution time of the algorithms. An evaluation was made using a test function applied to each of the implemented algorithms. The test allowed to show that parallel implementations obtained performance in all cases, reaching up to 5 times in ACO algorithm.
References
Ardeh, M. A. (2016). BenchmarkFcns Toolbox: A collection of benchmark functions for optimization. [Online; acesso em 10-Janeiro-2020].
Couto, D. C., Silva, C. A., and Barsante, L. S. (2015). Otimização de funções multimodais via técnica de inteligência computacional baseada em colônia de vaga-lumes. In Proceedings of the XXXVI Iberian Latin American Congress on Computational Methods in Engineering, Rio de Janeiro, RJ. CILAMCE.
Ignácio, A. A. V. and Ferreira, V. J. M. F. (2002). MPI: uma ferramenta para implementação paralela. Pesquisa Operacional, 22:105 – 116.
Kennedy, J. and Eberhart, R. C. (2001). Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Serapiao, A. (2009). Fundamentos de Otimizaçãor Inteligência de enxames: Uma Visão Geral. Controle y Automacao, 20:271–304.
Silva, M. A. L., de Souza, S. R., Souza, M. J. F., and de Franca Filho, M. F. (2018). Hybrid metaheuristics and multi-agent systems for solving optimization problems: A review of frameworks and a comparative analysis. Applied Soft Computing.
Talukder, S. (2011). Mathematicle modelling and applications of particle swarm optimization.
