Avaliando a Sobrecarga de Mecanismos Criptográficos Simétricos na Internet das Coisas: Uma Comparação Quantitativa entre os Protocolos MQTT e CoAP
Resumo
A Internet das Coisas é uma realidade tanto na indústria quanto na vida cotidiana das pessoas. Nesse contexto, informações sensíveis relacionadas a indivíduos, empresas e governos devem ser mantidas em sigilo. No entanto, a escolha de mecanismos criptográficos para essa finalidade deve considerar a disponibilidade de recursos dos dispositivos. Neste trabalho, apresentamos uma avaliação de diferentes mecanismos criptográficos simétricos para fornecer confidencialidade às mensagens dos protocolos MQTT e CoAP. São analisadas métricas como o consumo energético e o tempo de resposta. Experimentos práticos indicam que a escolha do algoritmo criptográfico pode levar a uma economia de até 32,29% de energia e uma redução de 41,60% no uso de CPU.
Palavras-chave:
Internet das Coisas, MQTT, CoAP, Sobrecarga de Cifração Simétrica, Comparação
Referências
Abbas, A., Khan, S., and Zomaya, A. (2020). Fog Computing: Theory and Practice. Wiley Series on Parallel and Distrib. Comp. Wiley.
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surveys Tuts., 17(4):2347–2376.
Ashton, K. et al. (2009). That ‘Internet of things’ thing. RFID Journal, 22(7):97–114.
Borgiani, V., Moratori, P., Kazienko, J. F., Tubino, E. R. R., and Quincozes, S. E. (2021). Toward a Distributed Approach for Detection and Mitigation of Denial-of-Service Attacks Within Industrial Internet of Things. IEEE Internet of Things Journal, 8(6):4569–4578.
Bideh, P. N., Sonnerup, J., and Hell, M. (2020). Energy consumption for securing lightweight IoT protocols. In Proceedings of the 10th International Conference on the Internet of Things, pages 1–8.
Cosmi, A. B. and Mota, V. F. (2019). Uma Analise dos Protocolos de Comunicação para Internet das Coisas. In III Workshop de Computação Urbana, pages 153–166.
De Caro, N., Colitti, W., Steenhaut, K., Mangino, G., and Reali, G. (2013). Comparison of two lightweight protocols for smartphone-based sensing. In 20th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), pages 1–6. IEEE.
Durante, G., Beccaro, W., and Peres, H. E. (2018). IoT Protocols Comparison for Wireless Sensors Network Applied to Marine Environment Acoustic Monitoring. IEEE Latin America Trans., 16(11):2673–2679.
Kothmayr, T., Schmitt, C., Hu, W., Brunig, M., and Carle, G. (2013). DTLS based security and two-way authentication for the Internet of Things. Ad Hoc Networks, 11(8):2710–2723.
Kumar, P. and Geetha, G. (2019). Web-cloud architecture levels and optimized MQTT and COAP protocol suites for web of things. Concurrency and Computation: Practic. and Exper., 31(12):e4867.
Moraes, T., Nogueira, B., Lira, V., and Tavares, E. (2019). Performance Comparison of IoT Communication Protocols. In 2019 IEEE International Conference on Systems, Man and Cybernetics, pages 3249–3254.
Naik, N. (2017). Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP. In IEEE International Systems Engineering Symposium, pages 1–7.
Quincozes, S., Emilio, T., and Kazienko, J. (2019). MQTT Protocol: Fundamentals, Tools and Future Directions. IEEE Latin America Transactions, 17(9):1439–1448.
Shelby, Z., Klaus, H., and Bormann, C. (2014). The Constrained Application Protocol (CoAP). RFC 7252.
Singh, S., Sharma, P. K., Moon, S. Y., and Park, J. H. (2017). Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions. Jrnl. of Amb. Intel. and Human. Comp., pages 1–18.
Surendran, S., Nassef, A., and Beheshti, B. D. (2018). A survey of Cryptographic Algorithms for IoT Devices. In 2018 IEEE Long Island Systems, Applications and Technology Conference, pages 1–8.
Tiburski, R. T., Amaral, L. A., de Matos, E., de Azevedo, D. F., and Hessel, F. (2017). Evaluating the Use of TLS and DTLS Protocols in IoT Middleware Systems Applied to E-health. In 14th IEEE Annual Consumer Communications & Networking Conference, pages 480–485.
Williams, P., Dutta, I., Daoudm, H., and Bayoumi, M. (2020). Security Aspects of Internet of Things – A Survey. In 6th IEEE World Forum on Internet of Things, pages 1–6.
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surveys Tuts., 17(4):2347–2376.
Ashton, K. et al. (2009). That ‘Internet of things’ thing. RFID Journal, 22(7):97–114.
Borgiani, V., Moratori, P., Kazienko, J. F., Tubino, E. R. R., and Quincozes, S. E. (2021). Toward a Distributed Approach for Detection and Mitigation of Denial-of-Service Attacks Within Industrial Internet of Things. IEEE Internet of Things Journal, 8(6):4569–4578.
Bideh, P. N., Sonnerup, J., and Hell, M. (2020). Energy consumption for securing lightweight IoT protocols. In Proceedings of the 10th International Conference on the Internet of Things, pages 1–8.
Cosmi, A. B. and Mota, V. F. (2019). Uma Analise dos Protocolos de Comunicação para Internet das Coisas. In III Workshop de Computação Urbana, pages 153–166.
De Caro, N., Colitti, W., Steenhaut, K., Mangino, G., and Reali, G. (2013). Comparison of two lightweight protocols for smartphone-based sensing. In 20th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), pages 1–6. IEEE.
Durante, G., Beccaro, W., and Peres, H. E. (2018). IoT Protocols Comparison for Wireless Sensors Network Applied to Marine Environment Acoustic Monitoring. IEEE Latin America Trans., 16(11):2673–2679.
Kothmayr, T., Schmitt, C., Hu, W., Brunig, M., and Carle, G. (2013). DTLS based security and two-way authentication for the Internet of Things. Ad Hoc Networks, 11(8):2710–2723.
Kumar, P. and Geetha, G. (2019). Web-cloud architecture levels and optimized MQTT and COAP protocol suites for web of things. Concurrency and Computation: Practic. and Exper., 31(12):e4867.
Moraes, T., Nogueira, B., Lira, V., and Tavares, E. (2019). Performance Comparison of IoT Communication Protocols. In 2019 IEEE International Conference on Systems, Man and Cybernetics, pages 3249–3254.
Naik, N. (2017). Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP. In IEEE International Systems Engineering Symposium, pages 1–7.
Quincozes, S., Emilio, T., and Kazienko, J. (2019). MQTT Protocol: Fundamentals, Tools and Future Directions. IEEE Latin America Transactions, 17(9):1439–1448.
Shelby, Z., Klaus, H., and Bormann, C. (2014). The Constrained Application Protocol (CoAP). RFC 7252.
Singh, S., Sharma, P. K., Moon, S. Y., and Park, J. H. (2017). Advanced lightweight encryption algorithms for IoT devices: survey, challenges and solutions. Jrnl. of Amb. Intel. and Human. Comp., pages 1–18.
Surendran, S., Nassef, A., and Beheshti, B. D. (2018). A survey of Cryptographic Algorithms for IoT Devices. In 2018 IEEE Long Island Systems, Applications and Technology Conference, pages 1–8.
Tiburski, R. T., Amaral, L. A., de Matos, E., de Azevedo, D. F., and Hessel, F. (2017). Evaluating the Use of TLS and DTLS Protocols in IoT Middleware Systems Applied to E-health. In 14th IEEE Annual Consumer Communications & Networking Conference, pages 480–485.
Williams, P., Dutta, I., Daoudm, H., and Bayoumi, M. (2020). Security Aspects of Internet of Things – A Survey. In 6th IEEE World Forum on Internet of Things, pages 1–6.
Publicado
18/07/2021
Como Citar
QUINCOZES, Vagner E.; QUINCOZES, Silvio E.; KAZIENKO, Juliano F..
Avaliando a Sobrecarga de Mecanismos Criptográficos Simétricos na Internet das Coisas: Uma Comparação Quantitativa entre os Protocolos MQTT e CoAP. In: WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE COMUNICAÇÃO (WPERFORMANCE), 20. , 2021, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 13-24.
ISSN 2595-6167.
DOI: https://doi.org/10.5753/wperformance.2021.15719.