On Intelligent, Autonomous and Collaborative Agents to Manage Internet Routing Domains
Abstract
This article describes an environment for knowledge acquisition, learning, use and collaboration inter agents over Internet Infrastructure. Four agent types are used in a previously applied fourtier model, such as the use case on the Internet Routing Registry. This model, which can be implemented in each Autonomous System domain of the Internet infrastructure, is integrated into an environment with (a) capturing information from unstructured databases, (b) creating and updating training bases appropriate to machine learning algorithms and (c) creation and feeding of a knowledge base. Such resources become readily available to agents in each domain and to agents in all other domains with the aim of making them autonomous. The agents collaborate and interact with each other, through individual blockchain structures that also take care of operational security and integration aspects. In addition, a test bed to validate the entire model, including the functionalities of the agents, is also proposed and characterized.
References
Bagnulo, M., Matthews, P., and van Beijnum, I. (April 2011). Stateful nat64: Network address and protocol translation from ipv6 clients to ipv4 servers. Technical report, RFC Editor. RFC6146.
Bauer, B., Muller, J. P., and Odell, J. (2000). An extension ofUML by protocols for multi- agent interaction. In MultiAgent Systems, 2000. Proceedings. Fourth International Conference on, pages 207–214. IEEE.
Bauer, B., M¨uller, J. P., and Odell, J. (2001). Agent UML: A formalism for specify- ing multiagent software systems. International Journal of Software Engineering and Knowledge Engineering, 11(03):207–230.
Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A., Carpenter, B., Jiang, S., and Ciavaglia, L. (2014). Autonomic networking - definitions and design goals. Tech- nical report, RFC Editor.
Bellifemine, F., Caire, G., Pogg, A., and Rimassa, G. (2008). JADE: A software frame- work for developing multi-agent applications. Lessons learned. Information and Soft- ware Technology, 50(1):10–21.
Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE–A FIPA-compliant agent framework. In Proceedings ofPAAM, volume 99, page 33. London.
Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Developing Multi-Agent Systems with JADE. Wiley, USA, 1 edition.
Bernon, C., Cossentino, M., and Pav´on, J. (2005). Agent-oriented software engineering. The Knowledge Engineering Review, 20(02):99–116.
Braga, J. (2015). Objetos de Aprendizagem: Metodologia de Desenvolvimento. Editora da UFABC, S˜ao Paulo, 1 edition.
Braga, J. and Omar, N. (2014). Semantic repository in internet infrastructure knowledge domain: Methodology. In Anais do CSBC 2014 - IWPIETF LAC, pages 2179–2184, Bras´ılia, DF.
Braga, J., Silva, J. N., Endo, P. T., and Omar, N. (2019). Internet Infrastructure Data Base (IIDB). DOI 10.17605/OSF.IO/NZFQW. Available at https://OSF.IO/NZFQW. Acessed: 19 Mar 2019.
Braga, J., Silva, J. N., Endo, P. T., Ribas, J., and Omar, N. (2018). Blockchain to Improve Security, Knowledge and Collaboration Inter-Agent Communication over Restrict Do- mains of the Internet Infrastructure. In Proceeding of CSBC 2018 - VWorkshop pre IETF, pages 61–73, Natal, RN Brazil.
Domingos, P. (2012). A few useful things to know about machine learning. Communica- tions ofthe ACM, 55(10):78–87.
Ebeling, W. and Feistel, R. (2011). Physics of Self-organization and Evolution. John Wiley & Sons.
Enache, D. and Alexandru, M. (2016). A Study of the Techonology Transition from IPv4 to IPv6 for an ISP. Review ofthe Air Force Academy, 1(31):117–122.
Eriksson, H.-E. and Penker, M. (2000). Business Modeling with UML. OMG Press, New York, USA.
Eriksson, H.-E. and Penker, M. (2004). UML 2 Toolkit. OMG Press, New York, USA.
Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA.
FIPA (2002a). Sc00001l: Abstract architecture specification.
FIPA (2002b). Sc00036h: Propose interaction protocol specification.
FIPA (2004). Sc00023k: Agent management specification.
Garfinkel, S. (1995). PGP: pretty good privacy. O’Reilly Media,
Horn, P. (2001). Autonomic computing: Ibm’s perspective on the state of information technology. IBM Research.
Isotani, S. and Bittencourt, I. I. (2015). Dados abertos conectados. Novatec Editora, S˜ao Paulo, SP, Brasil.
Jennings, N. R. (2000). On agent-based software engineering. Artificial intelligence, 117(2):277–296.
Marques, P. and Dupont, F. (March 1999). Use of bgp-4 multiprotocol extensions for ipv6 inter-domain routing. Technical report, RFC Editor. RFC2545.
Martinsen, P., Reddy, T., and Patil, P. (July 2018). Guidelines for Multihomed and IPv4/IPv6 Dual-Stack Interactive Connectivity Establishment (ICE). Technical report, RFC Editor. RFC8421.
Marwala, T. and Xing, B. (2018). Blockchain and artificial intelligence. arXiv preprint arXiv:1802.04451.
Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications ofthe ACM, 38(11):39–41.
Moro, G., Sartori, C., and Singh, M. P. (2005). Agents and Peer-to-Peer Computing. Springer.
Movahedi, Z., Ayari, M., Langar, R., and Pujolle, G. (2012). A survey of autonomic network architectures and evaluation criteria. Communications Surveys & Tutorials, 14(2):464–490.
Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., and Torna- tore, M. (2018). A Survey on Application of Machine Learning Techniques in Optical Networks. IEEE Communications Surveys & Tutorials, pages 1–1.
Odell, J., Parunak, H. V. D., and Fleischer, M. (2003). Modeling agents and their en- vironment: The communication environment. Journal of Object Technology, pages 39–52.
Odell, J. J., Parunak, H. V. D., and Bauer, B. (2001). Representing agent interaction protocols in UML. In Agent-oriented software engineering, pages 121–140. Springer.
Peace, A. (2011). Ontology: A Practical Guide. Articulate Software Press, Angwin, CA, first edition.
Poole, D. L. and Mackworth, A. K. (2010). Artificial Intelligence: foundations ofcompu- tational agents. Cambridge University Press.
Prusty, N. (2017). Building Blockchain Projects. Packt Publishing Ltd.
Russel, S. and Norvig, P. (2010). Artificial Intelligence. Prentice Hall, New York, 3 edition.
Schmid, S., Sifalakis, M., and Hutchison, D. (2006). Towards autonomic networks. In Autonomic Networking, pages 1–11. Springer.
Srisuresh, P. and Holdrege, M. (August 1999). IP Network Address Translator (NAT) Terminology and Considerations. Technical report, RFC Editor. RFC2663.
Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial intelli- gence. MIT press.
Witte, J. (2016). The Blockchain: A Gentle Introduction. SSRN Electronic Journal.
Wooldridge, M. (1997). Agent-based software engineering. IEEE Proceedings-software, 144(1):26–37.
Wooldridge, M. (2002). An introduction to Multiagent Systems. John Wiley & Sons, 1 edition.
Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons, 2 edition.
Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The knowledge engineering review, 10(02):115–152.
Wooldridge, M. J. (1992). The logical modelling of computational multi-agent systems. PhD thesis, Citeseer.
Wooldridge, M. J. (2000). Reasoning about rational agents. MIT press.
Wu, P., Cui, Y., Wu, J., Liu, J., and Metz, C. (2013). Transition from ipv4 to ipv6: A state-of-the-art survey. IEEE Communications Surveys & Tutorials, 15:1407–1424.
Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., and Chen, S. (2016). The blockchain as a software connector. Proceedings - 2016 13th Working IEEE/IFIP Conference on Software Architecture, WICSA 2016, 11(2016):182–191.
