Bulldogs Nose Detection using Deep Learning

Resumo


An animal nose identification system could allow efficient monitoring of pets, and it can be used in applications such as identifying animal breeds or possible diseases and/or injuries. For that, a bulldog image dataset was build from French bulldogs. To carry out the validation through cross-validation, 10 folds (K-folds) were created. Afterward, five convolutional neural networks (CNN) were trained with our dataset to identify the nose: Faster R-CNN (Region-based CNN), SABL (Side-Aware Boundary Localization), RetinaNet (ResNet50+FPN), VFNet (VarifocalNet), and ATSS (Adaptive Training Sample Selection). Faster R-CNN, SABL, RetinaNet, VFNet and ATSS were used for training in the first phase, while ATSS, Faster R-CNN, ATSS and SABL in the second. The results showed that the ATSS network obtained the highest values of mAP and Accuracy in the first phase. Moreover, SABL network achieved the highest values of mAP50, mAP75, Recall, F-Score and Accuracy at the end of the second phase.
Palavras-chave: Computer Vision, Neural Networks, Brachycephalic Obstructive Airway Syndrome, Stenotic Nares, Bulldogs Nose
Publicado
06/11/2024
CARVALHO, Joyce Katiuccia Medeiros Ramos; SILVA, Pedro Henrique Neves da; UHRY, Sandra Adriana; ANDRADE, Gustavo da Silva; ANDRADE, Gisele Braziliano de; PISTORI, Hemerson; LOEBENS, Newton. Bulldogs Nose Detection using Deep Learning. In: WORKSHOP DE VISÃO COMPUTACIONAL (WVC), 19. , 2024, Rio Paranaíba/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 114-120.

Artigos mais lidos do(s) mesmo(s) autor(es)

Obs.: Esse plugin requer que pelo menos um plugin de estatísticas/relatórios esteja habilitado. Se o seu plugins de estatísticas oferece mais que uma métrica, então, por favor, também selecione uma métrica principal na página de configurações administrativas do site e/ou da revista.