An Experiment in Feature Engineering for Generating Predictive Models for Dengue Cases
Abstract
This study aims to develop machine learning models to predict the number of dengue cases in a given health facility. Our approach involves feature engineering by integrating data from various domains. Specifically, we combine data from Brazil’s Unified Health System with meteorological data from the National Institute of Meteorology and the GOES-16 weather satellite. We train Long Short-Term Memory neural networks to generate predictive models that capture climatic patterns and their influences on dengue incidence, considering both spatial and temporal data.
Keywords:
Models, Dengue, prediction, feature engineering
References
Alves, L., Lana, R., and Coelho, F. (2021). A framework for weather-driven dengue virus transmission dynamics in different brazilian regions. Int. J. Environ. Res. Public Health, 18:9493.
Carrington, L. B., Armijos, M. V., Lambrechts, L., Barker, C. M., and Scott, T. W. (2013). Effects of fluctuating daily temperatures at critical thermal extremes on aedes aegypti life-history traits. PLoS ONE, 8(3):e58824.
Edillo, F., Ymbong, R. R., Navarro, A. O., Cabahug, M. M., and Saavedra, K. (2024). Detecting the impacts of humidity, rainfall, temperature, and season on chikungunya, dengue and zika viruses in aedes albopictus mosquitoes from selected sites in cebu city, philippines. Virology Journal, 21:42.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–1780.
Machado, C. J. S., Miagostovich, M. P., Leite, J. P. G., and Vilani, R. M. (2013). Promoção da relação saúde-saneamento-cidade por meio da virologia ambiental. Revista de Informação Legislativa, 50(199):321–345.
Ministério da Saúde (2024a). Indicadores de dengue.
Ministério da Saúde (2024b). Sistema Único de saúde (sus).
Reinhold, J. M., Lazzari, C. R., and Lahondère, C. (2018). Effects of the environmental temperature on aedes aegypti and aedes albopictus mosquitoes: A review. Insects, 9(4):158.
Salim, N. A. M., Samsudin, N. A., Ismail, R., et al. (2021). Prediction of dengue outbreak in selangor malaysia using machine learning techniques. Sci. Rep., 11:79193.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview.Neural Networks, 61:85–117.
Zhao, N., Charland, K., Carabali, M., Nsoesie, E. O., Maheu-Giroux, M., Rees, E., et al. (2020). Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in colombia. PLOS Neglected Tropical Diseases, 14(9).
Carrington, L. B., Armijos, M. V., Lambrechts, L., Barker, C. M., and Scott, T. W. (2013). Effects of fluctuating daily temperatures at critical thermal extremes on aedes aegypti life-history traits. PLoS ONE, 8(3):e58824.
Edillo, F., Ymbong, R. R., Navarro, A. O., Cabahug, M. M., and Saavedra, K. (2024). Detecting the impacts of humidity, rainfall, temperature, and season on chikungunya, dengue and zika viruses in aedes albopictus mosquitoes from selected sites in cebu city, philippines. Virology Journal, 21:42.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–1780.
Machado, C. J. S., Miagostovich, M. P., Leite, J. P. G., and Vilani, R. M. (2013). Promoção da relação saúde-saneamento-cidade por meio da virologia ambiental. Revista de Informação Legislativa, 50(199):321–345.
Ministério da Saúde (2024a). Indicadores de dengue.
Ministério da Saúde (2024b). Sistema Único de saúde (sus).
Reinhold, J. M., Lazzari, C. R., and Lahondère, C. (2018). Effects of the environmental temperature on aedes aegypti and aedes albopictus mosquitoes: A review. Insects, 9(4):158.
Salim, N. A. M., Samsudin, N. A., Ismail, R., et al. (2021). Prediction of dengue outbreak in selangor malaysia using machine learning techniques. Sci. Rep., 11:79193.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview.Neural Networks, 61:85–117.
Zhao, N., Charland, K., Carabali, M., Nsoesie, E. O., Maheu-Giroux, M., Rees, E., et al. (2020). Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in colombia. PLOS Neglected Tropical Diseases, 14(9).
Published
2024-10-14
How to Cite
GARCIA, Ramon; OGASAWARA, Eduardo; SOARES, Jorge; DE SOUZA, Amaury; SOBRINO, Rejane; BEZERRA, Eduardo.
An Experiment in Feature Engineering for Generating Predictive Models for Dengue Cases. In: BRAZILIAN E-SCIENCE WORKSHOP (BRESCI), 18. , 2024, Florianópolis/SC.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 151-158.
ISSN 2763-8774.
DOI: https://doi.org/10.5753/bresci.2024.243949.
