An Integration Testing Approach with Planning in Artificial Intelligence

  • Luis Felipe de Lima Universidade Federal do Paraná

Abstract


This paper presents ongoing doctoral research that proposes an approach based on artificial intelligence (AI) planning techniques to support integration testing. AI planning is used in integration testing representations that result in testing plans indicating an order for software systems integration and testing. The approach is structured in an architecture to generate the testing plans and execute the tests from the plan information. The research method includes bibliographic reviews, feasibility studies, case studies, and experiments to evaluate the representation and approach. It is expected to reduce the effort of planning and executing the integration testing.

References

Bozic, J., Tazl, O. A., and Wotawa, F. (2019). Chatbot testing using AI planning. In International Conference On Artificial Intelligence Testing, pages 37-44.

Bozic, J. and Wotawa, F. (2019). Software testing: According to plan! In International Conference on Software Testing, Verification and Validation Workshops, pages 23-31.

Delamaro, M., Jino, M., and Maldonado, J. (2016). Introducao ao teste de software. 2. ed. Elsevier.

Engström, E., Storey, M.-A., Runeson, P., Höst, M., and Baldassarre, M. T. (2020). How software engineering research aligns with design science: a review. Empirical Software Engineering, 25(4):2630-2660.

Galler, S. J., Zehentner, C., and Wotawa, F. (2010). AIana: An AI planning system for test data generation. In Workshop on Testing Object-Oriented Systems, pages 1-8.

Garousi, V., Rainer, A., Lauv?as Jr, P., and Arcuri, A. (2020). Software-testing education: A systematic literature mapping. Journal of Systems and Software, 165:110570.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: theory and practice. Elsevier.

Hoffmann, J. (2003). The Metric-FF planning system: translating "ignoring delete lists" to numeric state variables. Journal of artificial intelligence research, 20:291-341.

Lima, L. F. (2020). Teste de intrusão para aplicações web: um método com planejamento em inteligência artificial. Dissertação (Mestrado em Informática) - Programa de Pós-graduacão em Informática, Universidade Federal do Paraná.

Lima, L. F., Silva, F., Grégio, A. R. A., and Peres, L. M. (2020). A systematic literature mapping of artificial intelligence planning in software testing. In International Conference on Software Technologies, pages 152-159.

Mashkoor, A., Menzies, T., Egyed, A., and Ramler, R. (2022). Artificial intelligence and software engineering: Are we ready? Computer, 55(3):24-28.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL - The Planning Domain Definition Language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational.

Myers, G. J. (1979). The art of software testing. ISBN: 0-471-04328-1.

Pereira, F. C., Neto, G. B., Lima, L. F. d., Silva, F., and Peres, L. M. (2022). A tool for software requirement allocation using artificial intelligence planning. In 2022 IEEE 30th International Requirements Engineering Conference (RE), pages 257-258.

Pressman, R. S. and Maxim, B. R. (2021). Engenharia de software - 9ª edicão. AMGH. ISBN: 978-6558040101.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: A modern approach. Malaysia; Pearson Education Limited.

Silva, C. E. d. and Lemos, R. d. (2011). Dynamic plans for integration testing of self-adaptive software systems. In International Symposium on Software Engineering for Adaptive and Self-managing Systems, pages 148-157.

Simos, D. E., Bozic, J., Garn, B., Leithner, M., Duan, F., Kleine, K., Lei, Y., andWotawa, F. (2019). Testing TLS using planning-based combinatorial methods and execution framework. Software Quality Journal, 27(2):703-729.

Sommerville, I. (2019). Engenharia de software. 10ª edição. Pearson Universidades, ISBN: 978-8543024974.

Wazlawick, R. (2013). Engenharia de software: Conceitos e práticas, volume 1. Elsevier Brasil.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., and Regnell, B. (2000). Experimentation in Software Engineering - An Introduction. Doedrecht the Netherlands.

Zhang, Y., Jiang, S., Ding, Y., Yuan, G., Liu, J., Lu, D., and Qian, J. (2022). Generating optimal class integration test orders using genetic algorithms. International Journal of Software Engineering and Knowledge Engineering, 32(06):871-892.

Zhang, Y., Jiang, S., Wang, X., Chen, R., and Zhang, M. (2019). An optimization algorithm applied to the class integration and test order problem. Soft Computing, 23(12):4239-4253.
Published
2023-04-24
DE LIMA, Luis Felipe. An Integration Testing Approach with Planning in Artificial Intelligence. In: IBERO-AMERICAN CONFERENCE ON SOFTWARE ENGINEERING (CIBSE), 26. , 2023, Montevideo, Uruguai. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 261-268. DOI: https://doi.org/10.5753/cibse.2023.24710.