Automatic Cooking Recipe Difficulty Level Inference using Natural Language Processing Techniques
Abstract
In this work, a tool for inferring the degree of difficulty of cooking recipes will be proposed. The inference will be made by the textual classification of the recipe preparation methods. The tool will be a fundamental piece to the development of a context-aware knowledge-based cooking recipe recommendation system. Some of the main classifiers in Text Classification literature will be adopted, in addition to different feature extraction methods. An experimental evaluation is performed, in order to select the best approaches to compose the system.
References
Bahrawi, B. (2019). Sentiment analysis using random forest algorithm online social media based. 2:h.29–33.
Bhatnagar, R. (2018). Machine Learning and Big Data Processing: A Technological Perspective and Review, pages 468–478.
Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Britto, L. F. S., Oliveira, E. G., Pacı́fico, L. D. S., and Ludermir, T. B. (2019). Uma abodagem de análise de textos para a classificação de receitas culinárias baseadas ecumentos em português brasileiro. In Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional, pages 436–447, Porto Alegre, RS, Brasil. SBC.
Britto, L. F. S. and Pacı́fico, L. D. S. (2019). Análise de sentimentos para revisões de aplicativos mobile em português brasileiro. In Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional, pages 1080–1090, Porto Alegre, RS, Brasil. SBC.
Dalal, M. K. and Zaveri, M. A. (2011). Article: Todv: Automatic text classification: A technical review. International Journal of Computer Applications, 28(2):37–40. Full text available.
Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L. E., and Brown, D. E. (2019). Text classification algorithms: A survey. CoRR, abs/1904.08067.
Lamche, B., Rödl, Y., Hauptmann, C., and Wörndl, W. (2015). Context-aware recmendations for mobile shopping. CEUR Workshop Proceedings, 1405:21–27.
Maia, R. L. and Ferreira, J. C. (2018). Context-aware food recommendation system.
Majumder, B. P., Li, S., Ni, J., and McAuley, J. (2019). Generating personalized recipes from historical user preferences. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5976–5982, Hong Kong, China. Association for Computational Linguistics.
Pranckevicius, T. and Marcinkevičius, V. (2016). Application of logistic regression with part-of-the-speech tagging for multi-class text classification. pages 1–5.
Pratibha and Kaur, P. D. (2019). A context-aware recommender engine for smart kitchen. In Panigrahi, B. K., Trivedi, M. C., Mishra, K. K., Tiwari, S., and Singh, P. K., editors, Smart Innovations in Communication and Computational Sciences, pages 161–170, Singapore. Springer Singapore.
Schäfer, H., Elahi, M., Elsweiler, D., Groh, G., Harvey, M., Ludwig, B., Ricci, F., and Said, A. (2017). User nutrition modelling and recommendation: Balancing simplicity and complexity. pages 93–96.
Yang, L., Hsieh, C., Yang, H., Dell, N., Belongie, S. J., and Estrin, D. (2016). Yum-me: Personalized healthy meal recommender system. CoRR, abs/1605.07722.
Yao, L., Mao, C., and Luo, Y. (2018). Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. CoRR, abs/1807.07425.
Zhang, H., Wei, H., Tang, Y., and Pu, Q. (2019). Research on classification of scientific and technological documents based on naive bayes. In Proceedings of the 2019 11th International Conference on Machine Learning and Computing, New York, NY, USA. Association for Computing Machinery.
Ziser, Y. and Reichart, R. (2016). Neural structural correspondence learning for domain adaptation. CoRR, abs/1610.01588.
