OCANSpectra: an oral cancer detection system from salivary ATR-FTIR spectroscopy

  • Anagê C. Mundim Filho Federal University of Uberlândia
  • Janayna M. Fernandes Federal University of Uberlândia
  • Robinson Sabino-Silva Federal University of Uberlândia
  • Murillo G. Carneiro Federal University of Uberlândia

Abstract


Detecting oral cancer through immunohistochemical analysis is invasive, expensive, and often only detects cancer in later stages. Therefore, finding a non-invasive, sustainable, low-cost, and accurate diagnostic method is of great interest to the medical community. Attenuated total reflection infrared spectroscopy (ATR-FTIR) can provide valuable data for the detection of various diseases, including oral cancer. We investigate the use of ATR-FTIR data obtained from salivary samples to the detection of oral cancer. We evaluate five baseline correction methods and four classification techniques in order to improve respectively the spectrum quality and the predictive model. The combination of asymmetric least squares and support vector machine with gaussian kernel provided the best results with real data.

Keywords: ATR-FTIR, FTIR, oral cancer, detection, classification, SVM, LDA, baseline correction

References

Baek, S.-J., Park, A., Ahn, Y.-J., and Choo, J. (2015). Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst, 140(1):250–257.

Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., Heys, K. A., et al. (2014). Using fourier transform ir spectroscopy to analyze biological materials. Nature protocols, 9(8):1771–1791.

Balakrishnama, S. and Ganapathiraju, A. (1998). Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing, 18(1998):1–8.

Berrar, D. (2019). Cross-validation.

Boelens, H. F., Eilers, P. H., and Hankemeier, T. (2005). Sign constraints improve the detection of differences between complex spectral data sets: Lcir as an example. Analytical chemistry, 77(24):7998–8007.

Bozkurt, O., Severcan, M., and Severcan, F. (2010). Diabetes induces compositional, structural and functional alterations on rat skeletal soleus muscle revealed by ftir spectroscopy: a comparative study with edl muscle. Analyst, 135(12):3110–3119.

Bunaciu, A. A., Hoang, V. D., and Aboul-Enein, H. Y. (2015). Applications of ft-ir spectrophotometry in cancer diagnostics. Critical reviews in analytical chemistry, 45(2):156–165.

Butler, H. J., Brennan, P. M., Cameron, J. M., Finlayson, D., Hegarty, M. G., Jenkinson, M. D., Palmer, D. S., Smith, B. R., and Baker, M. J. (2019). Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer. Nature communications, 10(1):1–9.

Caixeta, D. C., Carneiro, M. G., Rodrigues, R., Alves, D. C. T., Goulart, L. R., Cunha, T. M., Espindola, F. S., Vitorino, R., and Sabino-Silva, R. (2023). Salivary ATR-FTIR spectroscopy coupled with support vector machine classification for screening of type 2 diabetes mellitus. Diagnostics, 13(8):1396.

Carneiro, M. G. (2016). Redes complexas para classificação de dados via conformidade de padrão, caracterização de importância e otimização estrutural. PhD thesis, Universidade de São Paulo.

Falamas, A., Faur, C., Ciupe, S., Chirila, M., Rotaru, H., Hedesiu, M., and Pinzaru, S. C. (2021). Rapid and noninvasive diagnosis of oral and oropharyngeal cancer based on micro-raman and ft-ir spectra of saliva. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 252:119477.

Giamougiannis, P., Morais, C. L., Rodriguez, B., Wood, N. J., Martin-Hirsch, P. L., and Martin, F. L. (2021). Detection of ovarian cancer (±neo-adjuvant chemotherapy effects) via ATR-FTIR spectroscopy: comparative analysis of blood and urine biofluids in a large patient cohort. Analytical and bioanalytical chemistry, 413(20):5095–5107.

Janik, P. and Lobos, T. (2006). Automated classification of power-quality disturbances using svm and rbf networks. IEEE Transactions on Power Delivery, 21(3):1663–1669.

Jubair, F., Al-karadsheh, O., Malamos, D., Al Mahdi, S., Saad, Y., and Hassona, Y. (2022). A novel lightweight deep convolutional neural network for early detection of oral cancer. Oral Diseases, 28(4):1123–1130.

Kavarthapu, A. and Gurumoorthy, K. (2021). Linking chronic periodontitis and oral cancer: A review. Oral Oncology, 121:105375.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest. R news, 2(3):18–22.

Lobbezoo, F., Aarab, G., Verhoeff, M. C., and Volgenant, C. M. (2022). The value of oral care in dying and death. The Lancet, 399(10342):2187–2188.

Losq, C. L. (2018). Rampy: a Python library for processing spectroscopic (IR, Raman, XAS...) data.

Malamud, D. (2011). Saliva as a diagnostic fluid. Dental Clinics, 55(1):159–178.

Martinez-Cuazitl, A., Vazquez-Zapien, G. J., Sanchez-Brito, M., Limon-Pacheco, J. H., Guerrero-Ruiz, M., Garibay-Gonzalez, F., Delgado-Macuil, R. J., de Jesus, M. G. G., Corona-Perezgrovas, M. A., Pereyra-Talamantes, A., et al. (2021). ATR-FTIR spectrum analysis of saliva samples from covid-19 positive patients. Scientific Reports, 11(1):1–14.

Mikkonen, J. J., Raittila, J., Rieppo, L., Lappalainen, R., Kullaa, A. M., and Myllymaa, S. (2016). Fourier transform infrared spectroscopy and photoacoustic spectroscopy for saliva analysis. Applied Spectroscopy, 70(9):1502–1510.

Morais, C. L., Paraskevaidi, M., Cui, L., Fullwood, N. J., Isabelle, M., Lima, K. M., Martin-Hirsch, P. L., Sreedhar, H., Trevisan, J., Walsh, M. J., et al. (2019). Standardization of complex biologically derived spectrochemical datasets. Nature protocols, 14(5):1546–1577.

Neville, B. W. and Day, T. A. (2002). Oral cancer and precancerous lesions. CA: a cancer journal for clinicians, 52(4):195–215.

Noble, W. S. (2006). What is a support vector machine? Nature biotechnology, 24(12):1565–1567.

Oliveira, S. W., Cardoso-Sousa, L., Georjutti, R. P., Shimizu, J. F., Silva, S., Caixeta, D. C., Guevara-Vega, M., Cunha, T. M., Carneiro, M. G., Goulart, L. R., et al. (2023). Salivary detection of zika virus infection using ATR-FTIR spectroscopy coupled with machine learning algorithms and univariate analysis: A proof-of-concept animal study. Diagnostics, 13(8):1443.

Peng, J., Peng, S., Xie, Q., and Wei, J. (2011). Baseline correction combined partial least squares algorithm and its application in on-line fourier transform infrared quantitative analysis. Analytica chimica acta, 690(2):162–168.

Peng, X., Dai, R., Ma, Y., Lin, B., Hui, X., Chen, X., and Lv, R. (2022). Early diagnosis and bioimaging of lung adenocarcinoma cells/organs based on spectroscopy machine learning. Journal of Innovative Optical Health Sciences, 15(02):2250011.

Ralbovsky, N. M. and Lednev, I. K. (2020). Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chemical Society Reviews, 49(20):7428–7453.

Rivera, C. (2015). Essentials of oral cancer. International journal of clinical and experimental pathology, 8(9):11884.

Sala, A., Anderson, D. J., Brennan, P. M., Butler, H. J., Cameron, J. M., Jenkinson, M. D., Rinaldi, C., Theakstone, A. G., and Baker, M. J. (2020). Biofluid diagnostics by ftir spectroscopy: A platform technology for cancer detection. Cancer letters, 477:122–130.

Shaikh, S., Yadav, D. K., and Rawal, R. (2021). Saliva based non invasive screening of oral submucous fibrosis using ATR-FTIR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 203:114202.

Silva, L. G., Péres, A. F., Freitas, D. L., Morais, C. L., Martin, F. L., Crispim, J. C., and Lima, K. M. (2020). ATR-FTIR spectroscopy in blood plasma combined with multivariate analysis to detect hiv infection in pregnant women. Scientific reports, 10(1):1–7.

Sitnikova, V. E., Kotkova, M. A., Nosenko, T. N., Kotkova, T. N., Martynova, D. M., and Uspenskaya, M. V. (2020). Breast cancer detection by ATR-FTIR spectroscopy of blood serum and multivariate data-analysis. Talanta, 214:120857.

Xu, D., Liu, S., Cai, Y., and Yang, C. (2019). Baseline correction method based on doubly reweighted penalized least squares. Applied optics, 58(14):3913–3920.

Zhang, L., Xiao, M., Wang, Y., Peng, S., Chen, Y., Zhang, D., Zhang, D., Guo, Y., Wang, X., Luo, H., et al. (2021). Fast screening and primary diagnosis of covid-19 by atr–ft-ir. Analytical chemistry, 93(4):2191–2199.
Published
2023-09-25
MUNDIM FILHO, Anagê C.; FERNANDES, Janayna M.; SABINO-SILVA, Robinson; CARNEIRO, Murillo G.. OCANSpectra: an oral cancer detection system from salivary ATR-FTIR spectroscopy. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 20. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 984-996. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2023.234549.