Disseminação Bio-Inspirada de Eventos em Redes Dinâmicas e Descentralizadas
Resumo
Este trabalho apresenta uma estratégia baseada em inteligência coletiva para a disseminação de eventos em redes dinâmicas e descentralizadas. Um evento corresponde à mudança do estado de um nodo ou enlace da rede. Através de formigas, que são abstrações para agentes móveis, as informações são disseminadas na rede. Um nodo que detecta o evento na sua vizinhança dispara a disseminação, que é controlada por feromônios. O nível de feromônios é utilizado para controlar o tamanho da população de formigas e determinar as rotas que percorrem. Um estudo empírico foi realizado, comparando a estratégia proposta com a disseminação por inundação e gossip. Resultados permitem observar que o algoritmo apresenta uma solução de compromisso entre o tempo necessário para a disseminação e a sobrecarga em termos do número de mensagens utilizadas.Referências
Ahmed, A. and Far, B. (2007). Performance of mobile agent based network topology discovery. In Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference on, pages 66–69.
Aissani, M., Fenouche, M., Sadour, H., and Mellouk, A. (2007). Ant-dsr: Cache maintenance based routing protocol for mobile ad-hoc networks. In Telecommunications, 2007. AICT 2007. The Third Advanced International Conference on, pages 35–35.
Bollobas, B. (2001). Random graphs. Cambridge Univ. Press.
Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. Oxford University Press, USA.
Brocco, A., Malatras, A., and Hirsbrunner, B. (2009). Proactive information caching for efficient resource discovery in a self-structured grid. In BADS ’09: Proceedings of the 2009 workshop on Bio-inspired algorithms for distributed systems, pages 11–18, New York, NY, USA. ACM.
Bu, T. and Towsley, D. (2002). On distinguishing between Internet power law topology generators. In IEEE INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, volume 2.
Dong, C., rong Cheng, X., and quan Zhang, M. (2006). Research of mobile agent based network topology discovery. In Innovative Computing, Information and Control, 2006. ICICIC ’06. First International Conference on, volume 1, pages 733–736.
Eugster, P., Guerraoui, R., Kermarrec, A., and Massoulie, L. (2004). Epidemic information dissemination in distributed systems. Computer, 37(5):60–67.
Gopalan, N., Mala, C., Shriram, R., and Agarwal, S. (2006). Multicast tree computation for group communication in mobile networks using optimization techniques. In Ad Hoc and Ubiquitous Computing, 2006. ISAUHC ’06. International Symposium on, pages 88–93.
Mullender, S. (1993). Distributed Systems. Addison Wesley Publishing Company.
Nassu, B., Nanya, T., and Duarte, E. (2007). Topology discovery in dynamic and decentralized networks with mobile agents and swarm intelligence. Proceedings of 7th ISDA, IEEE Computer Society, Washington, pages 685–690.
Wei, J., Guo, W., Su, J., and Tang, W. (2009). Mobile agent based topology discovery in mobile ad hoc networks. In Wireless Communications, Networking and Mobile Computing, 2009. WiCom ’09. 5th International Conference on, pages 1–4.
White, T. and Pagurek, B. (1998). Towards multi-swarm problem solving in networks. In Proceedings of Third International Conference on Multi-Agent Systems (ICMAS’98), pages 333–340.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83.
Aissani, M., Fenouche, M., Sadour, H., and Mellouk, A. (2007). Ant-dsr: Cache maintenance based routing protocol for mobile ad-hoc networks. In Telecommunications, 2007. AICT 2007. The Third Advanced International Conference on, pages 35–35.
Bollobas, B. (2001). Random graphs. Cambridge Univ. Press.
Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. Oxford University Press, USA.
Brocco, A., Malatras, A., and Hirsbrunner, B. (2009). Proactive information caching for efficient resource discovery in a self-structured grid. In BADS ’09: Proceedings of the 2009 workshop on Bio-inspired algorithms for distributed systems, pages 11–18, New York, NY, USA. ACM.
Bu, T. and Towsley, D. (2002). On distinguishing between Internet power law topology generators. In IEEE INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, volume 2.
Dong, C., rong Cheng, X., and quan Zhang, M. (2006). Research of mobile agent based network topology discovery. In Innovative Computing, Information and Control, 2006. ICICIC ’06. First International Conference on, volume 1, pages 733–736.
Eugster, P., Guerraoui, R., Kermarrec, A., and Massoulie, L. (2004). Epidemic information dissemination in distributed systems. Computer, 37(5):60–67.
Gopalan, N., Mala, C., Shriram, R., and Agarwal, S. (2006). Multicast tree computation for group communication in mobile networks using optimization techniques. In Ad Hoc and Ubiquitous Computing, 2006. ISAUHC ’06. International Symposium on, pages 88–93.
Mullender, S. (1993). Distributed Systems. Addison Wesley Publishing Company.
Nassu, B., Nanya, T., and Duarte, E. (2007). Topology discovery in dynamic and decentralized networks with mobile agents and swarm intelligence. Proceedings of 7th ISDA, IEEE Computer Society, Washington, pages 685–690.
Wei, J., Guo, W., Su, J., and Tang, W. (2009). Mobile agent based topology discovery in mobile ad hoc networks. In Wireless Communications, Networking and Mobile Computing, 2009. WiCom ’09. 5th International Conference on, pages 1–4.
White, T. and Pagurek, B. (1998). Towards multi-swarm problem solving in networks. In Proceedings of Third International Conference on Multi-Agent Systems (ICMAS’98), pages 333–340.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83.
Publicado
19/07/2011
Como Citar
BANZI, Adam S.; POZO, Aurora T. R.; DUARTE JR., Elias P..
Disseminação Bio-Inspirada de Eventos em Redes Dinâmicas e Descentralizadas. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 8. , 2011, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2011
.
p. 524-535.
ISSN 2763-9061.