Scientific Event Recommendation through Semantic Clustering and Embedding Analysis

  • Karla S. Silva UFMT
  • Rebeca L. Rezende UFMT
  • João V. D. Silva UFMT
  • Gabriel Cardoso UFMT
  • Thiago M. Ventura UFMT
  • Allan G. de Oliveira UFMT

Resumo


This work presents a series of experiments aimed at recommending scientific events within the Brazilian Computer Society (SBC), leveraging semantic embeddings generated by Large Language Models (LLMs) and unsupervised clustering techniques. Using BERTopic for topic modeling and multilingual representations, the experimental approach processes over 12,000 articles from 30 events to align submissions with relevant themes. The best configuration reached an accuracy of 0.91 and demonstrates the potential of LLM-based embeddings to support decision-making in scientific dissemination.

Referências

Abinaya, S., Indira, K., Karthiga, S., & Rajasenbagam, T. Time cluster personalized ranking recommender system in multi-cloud. Mathematics, 11(6), 1300, 2023.

Asabere, N. Y., et al. Improving smart conference participation through socially-aware recommendations. Applied Sciences, v. 10, n. 24, p. 8823, 2020. DOI: 10.3390/app10248823.

Araújo, J. M. O.; Costa, M. A.; Lima, R. S. A importância do artigo científico na vida acadêmica. Criar Educação, Criciúma, v. 10, n. 1, p. 64–76, 2021.

Božić, M.; Grljević, O. Topic Modeling and Sentiment Analysis for Enhanced Personalization in Recommendation Systems. International Journal of Applied Artificial Intelligence, v. 38, n. 2, p. 245–263, 2024.

Bornmann, L.; Haunschild, R.; Mutz, R. Growth rates of modern science: A latent piecewise growth curve approach. Humanities and Social Sciences Communications, v. 8, n. 224, p. 1–11, 2021. DOI: 10.1057/s41599-021-00903-w.

Ding, J., Qiao, Y. & Zhang, L. Plant disease prescription recommendation based on electronic medical records and sentence embedding retrieval. Plant Methods 19, 91 (2023). DOI: 10.1186/s13007-023-01070-6.

Dhinakaran, D., et al. Recommendation System for Research Studies Based on GCR. In: International Mobile and Embedded Technology Conference (MECON). IEEE, 2022. p. 61–65. DOI: 10.1109/MECON53876.2022.9751920.

Flicke, M., et al. Scholar Inbox: Personalized Paper Recommendations for Scientists. University of Tübingen, Tübingen AI Center, 2024.

Iyer, A.; Rao, V. N.; Mangaraj, M. A Correspondence Analysis Framework for Author Conference Recommendations. International Journal of Information Technology, v. 12, p. 1141–1147, 2020.

Jesus, J. M.; Oliveira, R. S.; Santos, F. D. A relevância dos eventos acadêmicos para a formação discente. Revista Exitus, v. 10, n. 1, p. 158–179, 2020.

Juliani, J. P. and Donha, R. D. G. Sistemas de Recomendação de Artigos Científicos: Integrando o Moodle com uma Base de Dados de Acesso Aberto. EaD em Foco, v. 13, n. 1, e2027, 2023. DOI: 10.18264/eadf.v13i1.2027.

Ouni, S.; Fkih, F.; Omri, M. N. A survey of machine learning-based author profiling from texts analysis in social networks. Multimedia Tools and Applications, v. 82, p. 36653–36686, 2023. DOI: 10.1007/s11042-023-14711-8.

Rizvi, S. T. R.; Ahmed, S.; Dengel, A. ACE 2.0: A Comprehensive tool for automatic extraction, analysis, and digital profiling of the researchers in Scientific Communities. Social Network Analysis and Mining, v. 13, n. 81, 2023. DOI: 10.1007/s13278-023-01085-w.

Rumadi; Yuniarno, E. M.; Rachmadi, R. F. Research Mapping in Research Organizations Based on Abstracts of Scientific Publications using BERTopic Modeling. In: Proceedings of the 7th International Conference on New Media Studies (CONMEDIA 2023), Bali, Indonesia, 6-8 Dec. 2023. IEEE, 2023. DOI: 10.1109/CONMEDIA60526.2023.10428435.

Sociedade Brasileira de Computação (SBC). Relatório de Atividades da Diretoria 2022–2023. Porto Alegre: SBC, 2023. Disponível em: [link]. Acesso em: 16 jun. 2025.

Sivakumar, A.; Gunasundari, R. A Survey on Data Preprocessing Techniques for Bioinformatics and Web Usage Mining. Department of Computer Science, Karpagam University, Coimbatore, 2017. Disponível em: [link].

Wang, R., et al. Exploration on Scientific Research Data-Targeted Intelligent Recommendation System Using Machine Learning Under the Background of Sustainable Development. Frontiers in Psychology, v. 13, 788183, 2022. DOI: 10.3389/fpsyg.2022.788183.

Wu, S. and Dredze, M. Are All Languages Created Equal in Multilingual BERT? In: Proceedings of the 5th Workshop on Representation Learning for NLP. Association for Computational Linguistics, 2020. p. 120–130.
Publicado
29/09/2025
SILVA, Karla S.; REZENDE, Rebeca L.; SILVA, João V. D.; CARDOSO, Gabriel; VENTURA, Thiago M.; OLIVEIRA, Allan G. de. Scientific Event Recommendation through Semantic Clustering and Embedding Analysis. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 22. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 652-663. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2025.13973.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>