Combined Classifiers for Detection of Breast Cancer Metastasis in Histopathological Images
Resumo
O câncer de mama é uma doença responsável pela maioria das mortes no Brasil e afeta principalmente mulheres. Entre as consequências de sua ocorrência estão a predisposição genética, o sedentarismo e a menopausa tardia. É uma doença que requer diagnóstico o mais rápido possível para que o paciente possa iniciar o tratamento. Além disso, estudos sugerem que patologistas podem atingir uma precisão de cerca de 72% ao analisar um exame composto por milhares de imagens histopatológicas de cortes de linfonodos. Nesse contexto, este trabalho descreve um classificador que combina ResNet50, Random Forest (RF) e Support Vector Machine (SVM) treinados pelo conjunto de dados PatchCamelyon. Os resultados indicam que o método proposto atingiu uma precisão e F1-score de 81%.Referências
Aftab, M., Mehmood, F., Zhang, C., and et al. (2025). Ai in oncology: Transforming cancer detection through machine learning and deep learning applications. arXiv preprint arXiv:2501.15489.
Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Camelyon, C. Bejnordi, B. E. V. M. v. D. P. J. v. G. B. K. N. L. G. v. d. L. J. A. W. M. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 318(22):2199–2210.
Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–297.
Gayathri, S., Gopi, V. P., and Palanisami, P. (2020). A lightweight cnn for diabetic retinopathy classification from fundus images. Biomedical Signal Processing and Control, 62:102115.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2 edition.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.
Ismail, N. S. and Sovuthy, C. (2019). Breast cancer detection based on deep learning technique. In 2019 International UNIMAS STEM 12th Engineering Conference (EnCon), pages 89–92.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–444.
Litjens, G. Bandi, P. (2022). He-stained sentinel lymph node sections of breast cancer patients: the camelyon dataset. GigaScience, pages 2–3.
PREVENTION (2023a). Estimate — 2023. In of Health, B. M., editor, Cancer Incidence in Brazil, pages 39–40. Brazilian National Institute of Cancer Prevention.
PREVENTION (2023b). Estimate — 2023. page 31.
Silva, D. and Cortes, O. (2020). On convolutional neural networks and transfer learning for classifying breast cancer on histopathological images using gpu. In XXVII Brazilian Congress on Biomedical Engineering.
Silva, D. and Cortes, O. (2023). Metastasis detection of breast cancer using ensemble deep learning. In Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde, pages 104–114, Porto Alegre, RS, Brasil. SBC.
Singh, R., Ahmed, T., Kumar, A., Singh, A. K., Pandey, A. K., and Singh, S. K. (2020). Imbalanced breast cancer classification using transfer learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, pages 83–93.
Su, Y., Li, D., and Chen, X. (2021). Lung nodule detection based on faster r-cnn framework. Computer Methods and Programs in Biomedicine, 200:105866.
Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., and Welling, M. (2018). Rotation equivariant cnns for digital pathology. In Springer, editor, Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 234–241.
Wang, Z., Liu, Y., and Wang, Y. (2021). Medical image analysis with convolutional neural networks: A review. Journal of Biomedical Informatics, 77:102–116.
Wei, L., Niraula, D., Gates, E. D. H., Fu, J., Luo, Y., Nyflot, M. J., Bowen, S. R., El Naqa, I. M., and Cui, S. (2023). Artificial intelligence (ai) and machine learning (ml) in precision oncology: a review on enhancing discoverability through multiomics integration. British Journal of Radiology, 96(1150):20230211. Open Access.
Younis, Y. S., Ali, A. H., Alhafidh, O. K. S., Yahia, W. B., Alazzam, M. B., Hamad, A. A., and Meraf, Z. (2022). Early diagnosis of breast cancer using image processing techniques. In Velmurugan, P., editor, Applications of Nanomaterials and Nanotechnology in Engineering, Environment and Life Sciences, pages 2–5. Hindawi.
Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Camelyon, C. Bejnordi, B. E. V. M. v. D. P. J. v. G. B. K. N. L. G. v. d. L. J. A. W. M. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 318(22):2199–2210.
Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–297.
Gayathri, S., Gopi, V. P., and Palanisami, P. (2020). A lightweight cnn for diabetic retinopathy classification from fundus images. Biomedical Signal Processing and Control, 62:102115.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2 edition.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.
Ismail, N. S. and Sovuthy, C. (2019). Breast cancer detection based on deep learning technique. In 2019 International UNIMAS STEM 12th Engineering Conference (EnCon), pages 89–92.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–444.
Litjens, G. Bandi, P. (2022). He-stained sentinel lymph node sections of breast cancer patients: the camelyon dataset. GigaScience, pages 2–3.
PREVENTION (2023a). Estimate — 2023. In of Health, B. M., editor, Cancer Incidence in Brazil, pages 39–40. Brazilian National Institute of Cancer Prevention.
PREVENTION (2023b). Estimate — 2023. page 31.
Silva, D. and Cortes, O. (2020). On convolutional neural networks and transfer learning for classifying breast cancer on histopathological images using gpu. In XXVII Brazilian Congress on Biomedical Engineering.
Silva, D. and Cortes, O. (2023). Metastasis detection of breast cancer using ensemble deep learning. In Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde, pages 104–114, Porto Alegre, RS, Brasil. SBC.
Singh, R., Ahmed, T., Kumar, A., Singh, A. K., Pandey, A. K., and Singh, S. K. (2020). Imbalanced breast cancer classification using transfer learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, pages 83–93.
Su, Y., Li, D., and Chen, X. (2021). Lung nodule detection based on faster r-cnn framework. Computer Methods and Programs in Biomedicine, 200:105866.
Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., and Welling, M. (2018). Rotation equivariant cnns for digital pathology. In Springer, editor, Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 234–241.
Wang, Z., Liu, Y., and Wang, Y. (2021). Medical image analysis with convolutional neural networks: A review. Journal of Biomedical Informatics, 77:102–116.
Wei, L., Niraula, D., Gates, E. D. H., Fu, J., Luo, Y., Nyflot, M. J., Bowen, S. R., El Naqa, I. M., and Cui, S. (2023). Artificial intelligence (ai) and machine learning (ml) in precision oncology: a review on enhancing discoverability through multiomics integration. British Journal of Radiology, 96(1150):20230211. Open Access.
Younis, Y. S., Ali, A. H., Alhafidh, O. K. S., Yahia, W. B., Alazzam, M. B., Hamad, A. A., and Meraf, Z. (2022). Early diagnosis of breast cancer using image processing techniques. In Velmurugan, P., editor, Applications of Nanomaterials and Nanotechnology in Engineering, Environment and Life Sciences, pages 2–5. Hindawi.
Publicado
29/09/2025
Como Citar
MELO, Luis Jhonne Carvalhal de; CORTES, Omar Andres Carmona; JACOB JÚNIOR, Antônio Fernando Lavareda.
Combined Classifiers for Detection of Breast Cancer Metastasis in Histopathological Images. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 22. , 2025, Fortaleza/CE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 1161-1172.
ISSN 2763-9061.
DOI: https://doi.org/10.5753/eniac.2025.14404.
