Comparative Study of Machine Learning Methods Applied to Intrusion Detection Systems

  • Lucas C. C. Silva UFMA
  • Alexandre W. S. Silva UFMA
  • Aridson N. Fernandes Filho UFMA
  • Alex O. Barradas Filho UFMA

Abstract


With the advent of technology, information traffic is growing faster and the invasion of this scope has become commonplace. However, there are mechanisms to avoid and / or identify this type of intrusion, that are the Intrusion Detection Systems. And with the advances of the Artificial Intelligence tools verified the viability of having IDS based on Machine Learning, starting from the resizing done in the NSL-KDD dataset using the same methods of an earlier study done in another dataset, maintaining the accuracy and decreasing the computational cost.

Keywords: Intrusion Detection Systems, Artificial Intelligence, Machine Learning

References

Alkhalil, A. and Ramadan, R. A. (2017). Iot data provenance implementation challenges. Procedia Computer Science, 109:1134 – 1139.

Campos, L. M. L. and Lima, A. S. (2012). Sistema para detecção de intrus˜ao em redes de computadores com uso de t´ecnica de mineração de dados. In V Congresso Tecnol´ogico Infobrasil, Fortaleza, Brasil.

Chouhan, N., Khan, A., and ur Rasheed Khan, H. (2019). Network anomaly detection using channel boosted and residual learning based deep convolutional neural network. Applied Soft Computing, 83:105612.

Farnaaz, N. and Jabbar, M. (2016). Random forest modeling for network intrusion detection system. Procedia Computer Science, 89:213 – 217.

Hajiheidari, S., Wakil, K., Badri, M., and Navimipour, N. J. (2019). Intrusion detection systems in the internet of things: A comprehensive investigation. Computer Networks, 160:165 – 191.

Hamzei, M. and Navimipour, N. J. (2018). Toward efficient service composition techniques in the internet of things. IEEE Internet of Things Journal, 5(5):3774–3787.

Morettin, P. A. and Bussab, W. d. O. (2010). Estatística b´asica. Saraiva, 6 edition.

Shenfield, A., Day, D., and Ayesh, A. (2018). Intelligent intrusion detection systems using artificial neural networks. ICT Express, 4(2):95 – 99.

Tavallaee, M., Bagheri, E., Lu,W., and Ghorbani, A. A. (2009). A detailed analysis of the kdd cup 99 data set. In IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA).

Viegas, E. K., Santin, A. O., and Oliveira, L. S. (2017). Toward a reliable anomaly-based intrusion detection in real-world environments. Computer Networks, 127:200 – 216.

Zhang, J., Gardner, R., and Vukotic, I. (2019). Anomaly detection in wide area network meshes using two machine learning algorithms. Future Generation Computer Systems, 93:418 – 426.
Published
2019-09-25
SILVA, Lucas C. C.; SILVA, Alexandre W. S.; FERNANDES FILHO, Aridson N.; BARRADAS FILHO, Alex O.. Comparative Study of Machine Learning Methods Applied to Intrusion Detection Systems. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 7. , 2019, São Luís/MA. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 135-142.