Conductor Classification Using OBD-II System Information

  • Pedro H. A. Ribeiro UFPI
  • José M. P. M. Júnior UFPI

Abstract


The sharp rise in crime, evident in the number of stolen vehicles between 2014 and 2017, is a determining factor in the development of systems capable of classifying drivers into publicly traded vehicles. This work then proposes an assessment of machine learning techniques for driver classification. The evaluation is based on the average accuracy, median, maximum and minimum values, standard deviation and execution time of each computational technique applied for this purpose. The analysis of the presented data shows that the accuracy of the technical production of a machine or of a sower must be analyzed, being necessary also an analysis of the execution time, and later, an application of the techniques in an author's own database.

Keywords: Machine Learning, OBD-II System, Driver Classification

References

Birnbaum, R., Truglia, J. (2001). Getting to know OBD II. Editora Ralph Birnbaum.

Bishop, C. (1995). Neural networks for pattern recognition. Oxford University Press.

Chollet, F. (2018). Deep learning with Python. Manning Publications. United States of America.

Fernandez, S., Ito, T. (2016) Driver classification for intelligent transportation systems using fuzzy logic. In: IEEE. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on. [S.l.]. p. 1212–1216.

Kwak, B. I., Woo, J., Kim, H. K. (2016). Know your master: Driver profiling based anti-theft method, PST 2016.

Lee, H. D., Monard,M. C., Voltolini, R.F., Wu, F. C. (2005). Avaliação Experimental e Comparação de Algoritmos de Seleção de Atributos Importantes com o Algoritmo FDimBF Baseado na Dimensão Fractal. Relatórios Técnicos do ICMC. N° 264.

Martinelli, F., Mercaldo, F., Orlando, A., Nardone, V., Santone, A., Sangaiah, A. K (2018). Human Behavior Characterization Driving Style Recognition in Vehicle System. Disponível em: https://doi.org/10.1016/j.compeleceng.2017.12.050.

Neto, C. D. G. (2014) Potencial de técnicas de mineração de dados para o mapeamento de áreas cafeeiras. INPE.

Ramos, C. A. (2016) Sistema Neural Antifurto Veicular. Programa de Pós Graduação em Ciência da Computação. Universidade Federal de Lavras, Minas Gerais.

Rokach, L., Maimon, O. (2008) Data mining with decision trees: Theory and applications. World Scientific Publishing. 2ª Ed. Series in Machine Perceptron Artificial Intelligence, Vol 81.

Silva, I. N., Spatti, D. H., Flauzino, R. A. (2010) Redes neurais artificiais para engenharia e ciências aplicadas. Artliber Editora Ltda, São Paulo, SP, Brasil.

Souza, A. G., Lacerda, W. S., Ferreira, D. D., Campos, G. L. (2018). Sistema de Identificação de Condutores Baseado em Métodos de Extração de Características Estatísticas e Técnicas de Redução de Dimensionalidade. XXII Congresso Brasileiro de Automática.

Vaiana, R. et al. (2014) Driving behavior and traffic safety: an acceleration-based safety evaluation procedure for smartphones. Modern Applied Science, v. 8, n. 1, p. 88, 2014.
Published
2019-09-25
RIBEIRO, Pedro H. A.; M. JÚNIOR, José M. P.. Conductor Classification Using OBD-II System Information. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 7. , 2019, São Luís/MA. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 174-181.