Análise de Colaboração em Processos de Negócio por meio de SGBDs de Grafos e Dados de Proveniência Multimodais

  • Maria Luiza Falci Federal Fluminense University
  • Andréa Magalhães Federal Fluminense University
  • Vanessa Braganholo Federal Fluminense University https://orcid.org/0000-0002-1184-8192
  • Aline Paes Federal Fluminense University
  • Daniel de Oliveira Federal Fluminense University

Abstract


Data provenance in different formats are collected throughout the execution and definition of business processes. Analyzing these data in an integrated form can be a complex and error prone task when performed manually. However, this analysis can generate insights about the business process. This work presents MINERVA (Multimodal busINEss pRoVenance Analysis), an approach that focuses on collaboration analysis and on identifying possible improvements in the business process using multimodal data provenance and Graph Databases. The proposed approach was evaluated through a feasibility study that used real data from a consulting company.

Keywords: Colaboração, Processos de Negócio, Bancos de dados de Grafos, Dados de Proveniência Multimodais

References

Belhajjame, K., Deus, H., Garijo, D., Klyne, G., Missier, P., Soiland-Reyes, S., and Zednik,S. (2012). Prov model primer.World Wide Web Consortium.

Cross, R. L., Cross, R. L., and Parker, A. (2004).The hidden power of social networks:Understanding how work really gets done in organizations. Harvard Business Press.

Dumas, M., Rosa, M. L., Mendling, J., and Reijers, H. A. (2013).Fundamentals of Busi-ness Process Management. Springer.

Ferreira, D. R. and Alves, C. (2011). Discovering user communities in large event logs. InInternational Conference on Business Process Management, pages 123–134. Springer.

Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computationaltasks: A survey.Comput. Sci. Eng., 10(3):11–21.

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural language understanding withBloom embeddings, convolutional neural networks and incremental parsing.

Mathiesen, P., Watson, J., Bandara, W., and Rosemann, M. (2012). Applying social tech-nology to business process lifecycle management. InBPM Workshops, pages 231–241.Springer.

van der Aalst, W. (2016).Process Mining: Data Science in Action. Springer PublishingCompany, Incorporated, 2nd edition.

Van Der Aalst, W. M., Reijers, H. A., and Song, M. (2005). Discovering social networksfrom event logs.Computer Supported Cooperative Work (CSCW), 14(6):549–593.

Zhao, W. and Zhao, X. (2014). Process mining from the organizational perspective. InFoundations of intelligent systems, pages 701–708. Springer.
Published
2020-09-28
FALCI, Maria Luiza; MAGALHÃES, Andréa; BRAGANHOLO, Vanessa; PAES, Aline; DE OLIVEIRA, Daniel. Análise de Colaboração em Processos de Negócio por meio de SGBDs de Grafos e Dados de Proveniência Multimodais. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 35. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 169-174. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2020.13636.