Assessment of Data Quality Dimensions for Agribusiness
Abstract
Good quality data improves information accuracy resulting in assertive decisions. To assess the various aspects involved, an approach that makes use of dimensions for verification is important. In this article, a study about data quality dimensions in the agribusiness domain is presented. The validation of dimensions is carried on two real databases, the first focusing on the environment and the second on family farming. The results show how each database behaves with defined dimensions.
Keywords:
agriculture, data quality, quality dimensions
References
Batini, C., Cappiello, C., Francalanci, C., and Maurino, A. (2009). Methodologies for data quality assessment and improvement. 41(3).
Cai, L. and Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14:2.
Cichy, C. and Rass, S. (2019). An overview of data quality frameworks. IEEE Access.
Malaverri, J. and Medeiros, C. (2012). Data quality in agriculture applications. Proceedings of the Brazilian Symposium on GeoInformatics, pages 128–139.
Sadiq, S. and et al. (2018). Data quality: The role of empiricism. SIGMOD Rec., 46(4):35–43.
Sidi, F., Shariat Panahy, P. H., Affendey, L. S., Jabar, M. A., Ibrahim, H., and Mustapha, A. (2012). Data quality: A survey of data quality dimensions. In 2012 International Conference on Information Retrieval Knowledge Management, pages 300–304.
Silvola, R., Harkonen, J., Vilppola, O., Kropsu-Vehkapera, H., and Haapasalo, H. (2016). Data quality assessment and improvement. International Journal of Business Information Systems, 22:62–81.
Cai, L. and Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14:2.
Cichy, C. and Rass, S. (2019). An overview of data quality frameworks. IEEE Access.
Malaverri, J. and Medeiros, C. (2012). Data quality in agriculture applications. Proceedings of the Brazilian Symposium on GeoInformatics, pages 128–139.
Sadiq, S. and et al. (2018). Data quality: The role of empiricism. SIGMOD Rec., 46(4):35–43.
Sidi, F., Shariat Panahy, P. H., Affendey, L. S., Jabar, M. A., Ibrahim, H., and Mustapha, A. (2012). Data quality: A survey of data quality dimensions. In 2012 International Conference on Information Retrieval Knowledge Management, pages 300–304.
Silvola, R., Harkonen, J., Vilppola, O., Kropsu-Vehkapera, H., and Haapasalo, H. (2016). Data quality assessment and improvement. International Journal of Business Information Systems, 22:62–81.
Published
2021-10-04
How to Cite
S. JUNIOR, Clovis; DORNELES, Carina F..
Assessment of Data Quality Dimensions for Agribusiness. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 36. , 2021, Rio de Janeiro.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 283-288.
ISSN 2763-8979.
DOI: https://doi.org/10.5753/sbbd.2021.17886.
