An experimental analysis of Data Management Approaches for Spatiotemporal Data in Visual Analysis Systems
Abstract
Over the last years, visual analytics systems have gained importance not only for presenting final results, but also for assisting in interactive analysis and decision-making processes. Such systems require efficient access to data, so that response times does not interfere with the user's ability to observe and analyze. Concurrently, research in the database domain has proposed solutions that can be used to support visualization systems. This paper presents a study of data management approaches to support interactive visualizations. We compared the performance of PostgreSQL, MonetDB, and Spark SQL to process multiple spatiotemporal queries common in visual analytics system. This study showed that Spark SQL presented the best performance for the chosen queries.
References
Battle, L., Chang, R., and Stonebraker, M. (2016). Dynamic prefetching of data tiles for interactive visualization. In SIGMOD, pages 1363–1375. ACM.
Battle, L., Eichmann, P., Angelini, M., Catarci, T., Santucci, G., Zheng, Y., Binnig, C., Fekete, J.-D., and Moritz, D. (2020). Database benchmarking for supporting real-time interactive querying of large data. In SIGMOD, page 1571–1587, New York, NY, USA.
Boncz, P. A., Manegold, S., and Rittinger, J. (2005). Updating the pre/post plane in monetdb/xquery. In Florescu, D. and Pirahesh, H., editors, XIME-P.
Caban, J. J. and Gotz, D. (2015). Visual analytics in healthcare-opportunities and research challenges.
Doraiswamy, H. and Freire, J. (2020). A gpu-friendly geometric data model and algebra for spatial queries. In SIGMOD, page 1875–1885, New York, NY, USA.
Eichmann, P., Zgraggen, E., Binnig, C., and Kraska, T. (2020). Idebench: A benchmark for interactive data exploration. In SIGMOD, page 1555–1569, New York, NY, USA.
Jiang, L., Rahman, P., and Nandi, A. (2018). Evaluating interactive data systems: Workloads, metrics, and guidelines. In SIGMOD, page 1637–1644, New York, NY, USA.
Kimball, R. and Ross, M. (2002).The Data Warehouse Toolkit: The complete guide to dimensional modeling. Wiley, New York.
Lins, L. D., Klosowski, J. T., and Scheidegger, C. E. (2013). Nanocubes for real-time exploration of spatiotemporal datasets. IEEE TVCG, 19(12):2456–2465.
Liu, Z. and Heer, J. (2014). The effects of interactive latency on exploratory visual analysis. IEEE transactions on visualization and computer graphics, 20(12):2122–2131.
Munzner, T. (2014). Visualization analysis and design. CRC press.
Nascimento, L. C., Knust, L., Santos, R., Sá, B., Moreira, G., Freitas, F., Moura, N., Lage, M., and Oliveira, D. (2021). Análise de dados pluviométricos multi-fonte baseada em técnicas olap e de visualização: uma abordagem prática. In WCAMA, pages 1–10.
Samet, H. (1990). The Design and Analysis of Spatial Data Structures. Addison-Wesley.
Schmidt, J. (2020). Usage of visualization techniques in data science workflows. In Proc. of the VISIGRAPP, pages 309–316.
Zheng, Y., Wu, W., Chen, Y., Qu, H., and Ni, L. M. (2016). Visual analytics in urban computing: An overview. IEEE Transactions on Big Data, 2(3):276–296.
Zimbrao, G. and de Souza, J. M. (1998). A raster approximation for processing of spatial joins. In VLDB, pages 558–569. Morgan Kaufmann.
