Meta-alinhamento de ontologias utilizando a abordagem presa-predador
Resumo
Todo ano, diversos novos alinhadores de ontologias são propostos na literatura, cada um utilizando uma heurística diferente, o que implica em desempenhos distintos de acordo com as características das ontologias. Um meta-alinhador consiste de um algoritmo que combina diversas abordagens a fim de obter melhores resultados em diferentes cenarios. Para atingir esse objetivo, é necessária a definição de um critério para melhor uso de alinhadores. Neste trabalho, é apresentado um meta-alinhador de ontologias que combina vários alinhadores através da meta-heurística evolutiva presa-predador como meio de parametrização das mesmas.
Referências
Akbari, I., Fathian, M., and Badie, K. (2009). An improved mlma+ and its application in ontology matching. In Innovative technologies in intelligent systems and industrial applications, 2009. CITISIA 2009, pages 56–60. IEEE.
Bock, J. and Hettenhausen, J. (2012). Discrete particle swarm optimisation for ontology alignment. Information Sciences, 192:152–173.
Euzenat, J., Shvaiko, P., et al. (2007). Ontology matching, volume 18. Springer.
Farinelli, F. and Almeida, M. (2014). Interoperabilidade semântica em sistemas de informação de saúde por meio de ontologias formais e informais: um estudo da norma openehr. XVII Encontro Nacional de Pesquisa em Ciência da Informação, 17(1).
Hai, D. et al. (2007). Schema matching and mapping-based data integration: Architecture, approaches and evaluation. VDM Verlag.
Joslyn, C. A., Paulson, P., and White, A. (2009). Measuring the structural preservation of semantic hierarchy alignments. In Proceedings of the 4th International Conference on Ontology Matching-Volume 551, pages 61–72. CEUR-WS. org.
Laumanns, M., Rudolph, G., and Schwefel, H.-P. (1998). A spatial predator-prey approach to multi-objective optimization: A preliminary study. In Parallel Problem Solving from Nature—PPSN V, pages 241–249. Springer.
Martinez-Gil, J. and Aldana-Montes, J. F. (2011). Evaluation of two heuristic approaches to solve the ontology meta-matching problem. Knowledge and Information Systems, 26(2):225–247.
Martinez-Gil, J. and Aldana-Montes, J. F. (2012). An overview of current ontology meta-matching solutions. The Knowledge Engineering Review, 27(4):393–412.
Otero-Cerdeira, L., Rodriguez-Martinez, F. J., and Gomez-Rodriguez, A. (2015). Ontology matching: A literature review. Expert Systems with Applications, 42(2):949–971.
Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. In IEEE International Conference on Evolutionary Computation, pages 69–73.
Sorensen, K., Sevaux, M., and Glover, F. (2017). A history of metaheuristics. Handbook of Heuristics.
Souza, J. F. (2012). Uma abordagem heurística uni-objetivo para calibragem em meta-alinhadores de ontologias. PhD thesis, Pontifícia Universidade Católica do Rio de Janeiro.
Souza, J. F., Siqueira, S. W. M., Melo, R. N., and de Lucena, C. J. P. (2014). Analise de abordagens populacionais para meta-alinhamento de ontologias. In iSys-Revista Brasileira de Sistemas de Informação, pages 75–97.
Tilahun, S. L. and Ong, H. C. (2015). Prey-predator algorithm: A new metaheuristic algorithm for optimization problems. International Journal of Information Technology & Decision Making, 14(06):1331–1352.
Wang, P. and Wang, W. (2016). Lily results for oaei 2016. In OM@ ISWC, pages 178–184.
Xue, X. and Tang, Z. (2017). An evolutionary algorithm based ontology matching system. Journal of Information Hiding and Multimedia Signal Processing.