Detection of Frequent Anomalies in Urban Road Transport

  • Ana Beatriz Cruz Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ)
  • João Ferreira Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ)
  • Diego Carvalho Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ)
  • Eduardo Mendes Fundação Getúlio Vargas (FGV)
  • Esther Pacitti Inria / University of Montpellier
  • Rafaelli Coutinho Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ)
  • Fabio Porto National Laboratory for Scientific Computing (LNCC)
  • Eduardo Ogasawara Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ)

Abstract


The growth of urban population and, consequently, the number of vehicles causes the increase of traffic jams and emission of polluting gases. In this context, we observe the intensification of papers that aim to identify bottlenecks and their causes. These papers propose methodologies that use trajectory data model and aim to explain systemic behaviors. This article proposes the identification and classification of anomalies in the urban road transport system from space-time aggregations to permanent objects. The methodology consists of pre-processing of data, identification of anomalies, identification, and classification of frequent patterns. Through it, we can identify the systemic and specific behaviors on the urban transit of Rio de Janeiro.

Keywords: Anomaly detection, road transport, spatiotemporal aggregations, anomaly identification and classification

References

Aggarwal, C. C. (2016). Outlier Analysis. Springer, New York, NY, 2nd edition.

Bierlaire, M., Chen, J., and Newman, J. (2013). A probabilistic map matching method for smartphone GPS data. Transportation Research Part C: Emerging Technologies, 26:78–98.

Chen, W., Guo, F., and Wang, F.-Y. (2015). A survey of traffic data visualization. Intelligent Transportation Systems, IEEE Transactions on, 16(6):2970–2984.

Cressie, N. and Wikle, C. K. (2015). Statistics for spatio-temporal data. John Wiley & Sons.

Cruz, A. B., Ferreira, J., Monteiro, B., Coutinho, R., Porto, F., and Ogasawara, E. (2017). Deteccção de anomalias no transporte rodoviário urbano. In Proceedings of the 32nd Brazilian Symposium on Databases (SBBD), pages 240–245.

Ferreira, N., Poco, J., Vo, H. T., Freire, J., and Silva, C. T. (2013). Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips. Visualization and Computer Graphics, IEEE Transactions on, 19(12):2149–2158.

Giannotti, F., Nanni, M., Pinelli, F., and Pedreschi, D. (2007). Trajectory pattern mining. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 330–339.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques. Morgan Kaufmann, Haryana, India; Burlington, MA, 3 edition.

Lakhina, A., Crovella, M., and Diot, C. (2004). Diagnosing network-wide traffic anomalies. In ACM SIGCOMM Computer Communication Review, pages 219–230. ACM.

Liu, B., Hsu, W., Chen, S., and Ma, Y. (2000). Analyzing the subjective interestingness of association rules. IEEE Intelligent Systems and their Applications, 15(5):47–55.

Mcgarry, K. (2005). A survey of interestingness measures for knowledge discovery. The Knowledge Engineering Review, 20(1):39–61.

Tao, Y., Kollios, G., Considine, J., Li, F., and Papadias, D. (2004). Spatio-temporal aggregation using sketches. In Proceedings - International Conference on Data Engineering, volume 20, pages 214–225.

United Nations (2014). World urbanization prospects. https://www.un-ilibrary.org/content/publication/527e5125-en.
Published
2018-08-25
CRUZ, Ana Beatriz; FERREIRA, João; CARVALHO, Diego; MENDES, Eduardo; PACITTI, Esther; COUTINHO, Rafaelli; PORTO, Fabio; OGASAWARA, Eduardo. Detection of Frequent Anomalies in Urban Road Transport. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 33. , 2018, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 271-276. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2018.22242.