STACY: A New Algorithm to Automatically Rank the Strength of Relationships Over Years

  • Michele A. Brandão Federal Institute of Minas Gerais
  • Pedro O. S. Vaz de Melo Federal University of Minas Gerais
  • Mirella M. Moro Federal University of Minas Gerais https://orcid.org/0000-0002-0545-2001

Abstract


Understanding the relationships between people in a social network and measuring their strength over time are interesting problems with distinct applications. Here, we propose a new algorithm (STACY) to automatically classify tie strength in eight different classes by considering the temporal aspect. Our results show: such classes represent different behaviors, and STACY identifies strong relationships that persist more than the ones classified by a state of the art algorithm.
Keywords: Time Graphs, Strength of Relationships, Social Network

References

Alves, G. B., Brandão, M. A., Santana, D. M., da Silva, A. P. C., and Moro, M. M. (2016). The strength of social coding collaboration on github. In SBBD, pages 247–252, Salvador, Brazil.

Brandão, M. A. and Moro, M. M. (2015). Analyzing the strength of co-authorship ties with neighborhood overlap. In DEXA, pages 527–542, Linz, Austria.

Castilho, D., Vaz de Melo, P. O. S., and Benevenuto, F. (2017). The strength of the work ties. Information Sciences, 375:155–170.

Gilbert, E. and Karahalios, K. (2009). Predicting tie strength with social media. In SIGCHI, pages 211–220, Boston, USA.

Granovetter, M. S. (1973). The strength of weak ties. American Joumal af Sociology, 78(6):1360–1380.

Karsai, M., Perra, N., and Vespignani, A. (2014). Time varying networks and the weakness of strong ties. Scientific reports, 4.

Kostakos, V. (2009). Temporal graphs. Physica A: Statistical Mechanics and its Applications, 388(6):1007–1023.

Laurent, G., Saramäki, J., and Karsai, M. (2015). From calls to communities: a model for time-varying social networks. The European Physical Journal B, 88(11):1–10.

Lima, H., Silva, T. H., Moro, M. M., Santos, R. L., Meira Jr, W., and Laender, A. H. (2013). Aggregating productivity indices for ranking researchers across multiple areas. In JCDL, pages 97–106, NYC, USA.

Miller, J. C. and Hagberg, A. (2011). Efficient generation of networks with given expected degrees. In WAW, pages 115–126, Atlanta, USA.

Nicosia, V. et al. (2013). Temporal Networks, chapter Graph Metrics for Temporal Networks, pages 15–40. Springer Berlin Heidelberg, Berlin, Heidelberg.

Vaz de Melo, P. O. S. et al. (2015). Recast: Telling apart social and random relationships in dynamic networks. Performance Evaluation, 87:19–36.

Zaki, M. J. and Meira Jr, W. (2014). Data mining and analysis: Fundamental concepts and algorithms. Cambridge University Press.

Zignani, M., Gaito, S., and Rossi, G. P. (2016). Predicting the link strength of newborn links. In WWW, pages 147–148, Montreal, Canada.
Published
2017-10-02
BRANDÃO, Michele A.; DE MELO, Pedro O. S. Vaz; MORO, Mirella M.. STACY: A New Algorithm to Automatically Rank the Strength of Relationships Over Years. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 32. , 2017, Uberlândia/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 136-147. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2017.171411.