Can the Strength of Relationships Measure the Quality of Communities?
Abstract
In social networks, community detection provides valuable data about relationships between individuals. There are various metrics to validate the quality of communities, but there is no consensus on the performance of these metrics. In this paper, we evaluate whether strength metrics can also be used to measure the quality of algorithms that detect communities. The results are positive to confirm such hypothesis.
Keywords:
Community Detection, Strength of Relationships
References
Almeida, H., Guedes Neto, D., Meira Jr., W., and Zaki, M. J. (2012). Towards a better quality metric for graph cluster evaluation. JIDM, 3(3):378.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech., 2008(10):P10008.
Brandão, M. A. and Moro, M. M. (2015). Analyzing the strength of co-authorship ties with neighborhood overlap. In DEXA, pages 527–542, Valencia, Espanha.
Brandão, M. A. and Moro, M. M. (2017). A comparative analysis of the strength of co-authorship ties in clusters. In AMW, Montevideo, Uruguai.
Goodman, L. A. (1961). Snowball sampling. Ann. Math. Statist., 32(1):148–170.
Mishra et al., N. (2007). Clustering social networks. In WAW, pages 56–67, S.Diego, USA.
Palla et al., G. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043):814–818.
Procópio, P., Laender, A. H., and Moro, M. M. (2011). Análise da rede de coautoria do simpósio brasileiro de bancos de dados. In SBBD Short Papers, Florianópolis, Brasil.
Van Dongen, S. M. (2000). Graph clustering by flow simulation. PhD thesis, University of Utrecht.
Xu, R. and Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3):645–678.
Yang, Z., Algesheimer, R., and Tessone, C. J. (2016). A comparative analysis of community detection algorithms on artificial networks. Scientific Reports, 6(30750).
Zaki, M. J. and Meira Jr, W. (2014). Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech., 2008(10):P10008.
Brandão, M. A. and Moro, M. M. (2015). Analyzing the strength of co-authorship ties with neighborhood overlap. In DEXA, pages 527–542, Valencia, Espanha.
Brandão, M. A. and Moro, M. M. (2017). A comparative analysis of the strength of co-authorship ties in clusters. In AMW, Montevideo, Uruguai.
Goodman, L. A. (1961). Snowball sampling. Ann. Math. Statist., 32(1):148–170.
Mishra et al., N. (2007). Clustering social networks. In WAW, pages 56–67, S.Diego, USA.
Palla et al., G. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043):814–818.
Procópio, P., Laender, A. H., and Moro, M. M. (2011). Análise da rede de coautoria do simpósio brasileiro de bancos de dados. In SBBD Short Papers, Florianópolis, Brasil.
Van Dongen, S. M. (2000). Graph clustering by flow simulation. PhD thesis, University of Utrecht.
Xu, R. and Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3):645–678.
Yang, Z., Algesheimer, R., and Tessone, C. J. (2016). A comparative analysis of community detection algorithms on artificial networks. Scientific Reports, 6(30750).
Zaki, M. J. and Meira Jr, W. (2014). Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press.
Published
2017-10-02
How to Cite
SILVA, Mariana O.; BRANDÃO, Michele A.; MORO, Mirella M..
Can the Strength of Relationships Measure the Quality of Communities?. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 32. , 2017, Uberlândia/MG.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2017
.
p. 204-209.
ISSN 2763-8979.
DOI: https://doi.org/10.5753/sbbd.2017.174600.
