Scientific Data Analysis: A Comparative Analysis of Computer Simulation Data
Abstract
Advances in computer simulations have allowed the processing of increasing volumes of data. To represent the complex data structures inherent in such simulations, they are stored in files of heterogeneous formats. Loading such data into a DBMS, such as SciDB, to support their analysis becomes a complex task, or even unfeasible, due to its volume and/or structure. To avoid this load, there are approaches that perform adaptive queries and/or index the files. Choosing the most suitable one may not be trivial. In this article we perform a comparative analysis in terms of the performance of the data query approaches produced by a simulation in computational fluid dynamics.
Keywords:
Computer Simulations, Data Query, Computational Fluid Dynamics
References
Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., and Mauldin, J. (2015). Paraview catalyst: Enabling in situ data analysis and visualization. In Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV2015, pages 25–29, New York, NY, USA. ACM.
Blanas, S., Wu, K., Byna, S., Dong, B., and Shoshani, A. (2014). Parallel data analysis directly on scientific file formats. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14, pages 385–396, New York, NY, USA. ACM.
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science Engineering, 10(3):11–21.
Guerra, G. M., Zio, S., Camata, J. J., Dias, J., Elias, R. N., Mattoso, M., B. Paraizo, P. L., G. A. Coutinho, A. L., and Rochinha, F. A. (2016). Uncertainty quantification in numerical simulation of particle-laden flows. Computational Geosciences, 20(1):265–281.
Karpathiotakis, M., Branco, M., Alagiannis, I., and Ailamaki, A. (2014). Adaptive query processing on raw data. Proc. VLDB Endow., 7(12):1119–1130.
Moreau, L. and Groth, P. T. (2013). Provenance: An Introduction to PROV. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers.
Silva, V., Camata, J., de Oliveira, D., Coutinho, A. L., Valduriez, P., and Mattoso, M. (2016). In situ data steering on sedimentation simulation with provenance data. In International Conference for High Performance Computing, Networking, Storage and Analysis, SC’16.
Silva, V., Leite, J., Camata, J. J., de Oliveira, D., Coutinho, A. L., Valduriez, P., and Mattoso, M. (2017). Raw data queries during data-intensive parallel workflow execution. Future Generation Computer Systems, 75:402 – 422.
Blanas, S., Wu, K., Byna, S., Dong, B., and Shoshani, A. (2014). Parallel data analysis directly on scientific file formats. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14, pages 385–396, New York, NY, USA. ACM.
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science Engineering, 10(3):11–21.
Guerra, G. M., Zio, S., Camata, J. J., Dias, J., Elias, R. N., Mattoso, M., B. Paraizo, P. L., G. A. Coutinho, A. L., and Rochinha, F. A. (2016). Uncertainty quantification in numerical simulation of particle-laden flows. Computational Geosciences, 20(1):265–281.
Karpathiotakis, M., Branco, M., Alagiannis, I., and Ailamaki, A. (2014). Adaptive query processing on raw data. Proc. VLDB Endow., 7(12):1119–1130.
Moreau, L. and Groth, P. T. (2013). Provenance: An Introduction to PROV. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers.
Silva, V., Camata, J., de Oliveira, D., Coutinho, A. L., Valduriez, P., and Mattoso, M. (2016). In situ data steering on sedimentation simulation with provenance data. In International Conference for High Performance Computing, Networking, Storage and Analysis, SC’16.
Silva, V., Leite, J., Camata, J. J., de Oliveira, D., Coutinho, A. L., Valduriez, P., and Mattoso, M. (2017). Raw data queries during data-intensive parallel workflow execution. Future Generation Computer Systems, 75:402 – 422.
Published
2017-10-02
How to Cite
GUEDES, Thaylon; SILVA, Vítor; CAMATA, José; MATTOSO, Marta; DE OLIVEIRA, Daniel.
Scientific Data Analysis: A Comparative Analysis of Computer Simulation Data. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 32. , 2017, Uberlândia/MG.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2017
.
p. 222-227.
ISSN 2763-8979.
DOI: https://doi.org/10.5753/sbbd.2017.174142.
