Hyperparameter Analysis in Deep Learning Applications Using Provenance Data
Abstract
Convolutional Neural Networks (CNN) training requires adjusting hyperparameters. Current solutions to help choosing the best hyperparameter configuration define their own representation to model the data derivation relationships. This proprietary representation makes data analysis and interoperability difficult. This paper proposes CNNProv, which adopts the W3C PROV standard to represent data derivation relationships to facilitate the analysis of hyperparameter configurations, thus contributing to the CNNs training phase. CNNProv captures provenance data and allows hyperparameter analysis at runtime. The experiments show the suitability of the W3C PROV for hyperparameter analysis, while contributing to the quality and reliability of CNN results, with negligible overhead of up to 4%.
References
Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb):281–305.
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science and Engineering, 10(3):11–21. DOI: https://doi.org/10.1109/mcse.2008.79
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press. DOI: https://doi.org/10.1007/s10710-017-9314-z
He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. (2018). Amc: Automl for model compression and acceleration on mobile devices. In Proceedings of the ECCV, pages 784–800. DOI: https://doi.org/10.1007/978-3-030-01234-2_48
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Adv. in neural inf. proc. sys., pages 1097–1105. DOI: https://doi.org/10.1145/3065386
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. DOI: https://doi.org/10.1109/5.726791
Moreau, L. and Groth, P. T. (2013). Provenance: An Introduction to PROV. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers. DOI: https://doi.org/10.2200/s00528ed1v01y201308wbe007
Schelter, S., B¨ose, J.-H., Kirschnick, J., Klein, T., and Seufert, S. (2017). Automatically tracking metadata and provenance of machine learning experiments. In MLS workshop @ NIPS.
Silva, V., de Oliveira, D., Mattoso, M., and Valduriez, P. (2018). Dfanalyzer: Runtime dataflow analysis of scientific applications using provenance. PVLDB, 11(12):2082–2085. DOI: https://doi.org/10.14778/3229863.3236265
Souza, R., Neves, L., Azeredo, L., Luiz, R., Tady, E., Cavalin, P. R., and Mattoso, M. (2018). Towards a human-in-the-loop library for tracking hyperparameter tuning in deep learning development. In LADaS@VLDB.
Stamatogiannakis, M., Kazmi, H., Sharif, H., Vermeulen, R., Gehani, A., Bos, H., and Groth, P. (2016). Trade-offs in automatic provenance capture. In IPAW, pages 29–41. Springer. DOI: https://doi.org/10.1007/978-3-319-40593-3_3
Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2014). Openml: Networked science in machine learning. SIGKDD Explor. Newsl., 15(2):49–60. DOI: https://doi.org/10.1145/2641190.2641198
