Automatic ER and PR scoring in Immunohistochemistry H-DAB Breast Cancer images

  • Johanna Elisabeth Rogalsky UFPR
  • Sergio Ossamu Ioshii PUCPR
  • Lucas Ferrari de Oliveira UFPR

Resumo


Breast Cancer (BC) is the most frequently diagnosed cancer for women. This way, the Brazilian Unified Health System (SUS) focuses on studying the disease and improving all the steps involved in dealing with BC. The presence or absence of the Estrogen Receptor (ER) and the Progesterone Receptor (PR), which define invasive subtypes, is detected through Immunohistochemistry (IHC). One way to assist the manual assessment of pathologists and histopathologists is to develop automatic scoring systems. Fortunately, digital pathology is increasingly achieving higher agreement with the pathologist. Therefore we create an automatic scoring system composed of image preprocessing, feature extracting, and classification achieves a 69% f-score rate.

Referências

Bankhead, P., Fernández, J. A., McArt, D. G., Boyle, D. P., Li, G., Loughrey, M. B., Irwin, G. W., Harkin, D. P., James, J. A., McQuaid, S., et al. (2018). Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer. Laboratory Investigation, 98(1):15.

Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G., Dunne, P. D., McQuaid, S., Gray, R. T., Murray, L. J., Coleman, H. G., et al. (2017). Qupath: Open source software for digital pathology image analysis. Scientific reports, 7(1):16878.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297.

Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2020). Global cancer observatory: Cancer today.

Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today and https://gco.iarc.fr/today/data/factsheets/populations/76-brazil-fact-sheets.pdf, accessed in 05 March 2020.

Gonzalez, R. and Woods, R. (2018). Digital Image Processing. Pearson.

Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., and Li, S. (2017). Breast cancer multiclassification from histopathological images with structured deep learning model. Scientific reports, 7(1):4172.

Instituto Nacional de Câncer (2019a). Breast cancer in brazil: synthesis of information. https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//a_situacao_ca_mama_brasil_2019.pdf. Accessed: 2019-10-23.

Instituto Nacional de Câncer (2019b). Estimate/2020 – cancer incidence in brazil. https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf. Accessed: 2021-03-08.

Liu, J., Qiu, G., and Shen, L. (2016). Luminance adaptive biomarker detection in digital pathology images. Procedia Computer Science, 90:113–118.

Mouelhi, A., Rmili, H., Ali, J. B., Sayadi, M., Doghri, R., and Mrad, K. (2018). Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images. Computer methods and programs in biomedicine, 165:37–51.

Paulik, R., Micsik, T., Kiszler, G., Kaszál, P., Székely, J., Paulik, N., Várhalmi, E.,

Prémusz, V., Krenács, T., and Molnár, B. (2017). An optimized image analysis algorithm for detecting nuclear signals in digital whole slides for histopathology. Cytometry Part A, 91(6):595–608.

Robertson, S., Azizpour, H., Smith, K., and Hartman, J. (2018). Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 194:19–35.

Society, A. C. (2018). Global cancer facts & figures 4th edition.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3):209–249.

Tollemar, V., Tudzarovski, N., Boberg, E., Törnqvist Andrén, A., Al-Adili, A., Le Blanc, K., Garming Legert, K., Bottai, M.,Warfvinge, G., and Sugars, R. (2018). Quantitative chromogenic immunohistochemical image analysis in cellprofiler software. Cytometry Part A, 93(10):1051–1059.

Tuominen, V. J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M., and Isola, J. (2010). Immunoratio: a publicly available web application for quantitative image analysis of estrogen receptor (er), progesterone receptor (pr), and ki-67. Breast cancer research, 12(4):R56.
Publicado
15/06/2021
ROGALSKY, Johanna Elisabeth; IOSHII, Sergio Ossamu; OLIVEIRA, Lucas Ferrari de. Automatic ER and PR scoring in Immunohistochemistry H-DAB Breast Cancer images. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 21. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 313-322. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2021.16075.