PPM-UNet: Uma Rede Neural Convolucional para a Segmentação de Rins em Imagens de TC
Abstract
Kidney cancer represents 3% of adult malignancies, and early diagnosis is an essential tool. Automatic segmentation aims to assist the physician in the diagnostic process. The objective of this work is to develop and evaluate a network to segment, in computed tomography images, the regions of the kidneys and tumor, if any. We evaluated the use of Pyramid Pooling Module replacing convolutional layers of the U-Net network to achieve the goal. The proposed methodology achieves as a result 0.91 of Iou for kidney regions and 0.88 of Iou for tumor regions.
References
de Nefrologia, S. B. (2022). Compreendendo os rins. Disponível em: [link].
do Câncer, I. N. (2022). Ministério da saúde amplia tratamento para câncer renal. Disponível em: [link].
Hafhouf, B., Zitouni, A., Megherbi, A. C., and Sbaa, S. (2020). A modified u-net for skin lesion segmentation. In 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), pages 225-228.
Heller, N., Sathianathen, N., Kalapara, A., Walczak, E., Moore, K., Kaluzniak, H., Rosenberg, J., Blake, P., Rengel, Z., Oestreich, M., Dean, J., Tradewell, M., Shah, A., Tejpaul, R., Edgerton, Z., Peterson, M., Raza, S., Regmi, S., Papanikolopoulos, N., and Weight, C. (2019). The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes. Disponível em: https:https://github.com/neheller/kits19.
Isensee, F. and Maier-Hein, K. H. (2019). An attempt at beating the 3d u-net.
Jatobá, A., Lima, L., Amorim, L., and Oliveira, M. (2020). Cnn hyperparameter optimization for pulmonary nodule classification. In Anais do XX Simpósio Brasileiro de Computação Aplicada à Saúde, pages 25-36, Porto Alegre, RS, Brasil. SBC.
Long, J., Shelhamer, E., and Darrell, T. (2014). Fully convolutional networks for semantic segmentation.
Oncoguia (2022). Taxa de sobrevida para câncer de rim.
O'Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation.
Shahin, A. H., Amer, K., and Elattar, M. A. (2019). Deep convolutional encoder-decoders with aggregated multi-resolution skip connections for skin lesion segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pages 451-454.
Sírio-Libanês, H. (2022). Câncer de rim: Saiba mais. Disponível em: [link].
Trevisan, V., Rodrigues, D., and Rezende, E. (2021). xrayaid detecting pneumonia using artificial intelligence. In Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde, pages 1-12, Porto Alegre, RS, Brasil. SBC.
Vogado, L., Veras, R., Araujo, F., Silva, R., and Aires, K. (2019). Rede neural convolucional para o diagnóstico de leucemia. In Anais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde, pages 46-57, Porto Alegre, RS, Brasil. SBC.
Yang, G., Li, G., Pan, T., Kong, Y., Wu, J., Shu, H., Luo, L., Dillenseger, J.-L., Coatrieux, J.-L., Tang, L., and Zhu, X. (2018). Automatic segmentation of kidney and renal tumor in ct images based on 3d fully convolutional neural network with pyramid pooling module. In 2018 24th International Conference on Pattern Recognition (ICPR), pages 3790-3795.
Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2016). Pyramid scene parsing network.
