Classificação de Carcinoma Endometrioide de Ovário por Transformação de Esquema de Cor e Radiomics em Imagens Histopatológicas
Resumo
Carcinoma endometrioide de ovário (CEO) é um subtipo do câncer de ovário com diagnóstico desafiador em imagens histopatológicas. Redes neurais convolucionais (CNNs) são amplamente utilizadas nessa tarefa, mas exigem grandes volumes de dados e alta carga computacional. Este trabalho propõe uma abordagem baseada em transformação de esquema de cor, Radiomics, e seleção incremental de características (I-RFE), aplicada em vários classificadores. Os experimentos mostraram que o método proposto supera CNNs da literatura, alcançando uma acurácia de 97,96% e F1-Score de 98,26%, enquanto a melhor CNN obteve 75% de acurácia. Esses achados sugerem que a abordagem pode aprimorar a detecção de CEO, tornando-se uma alternativa promissora no auxílio ao diagnóstico precoce.Referências
Carvalho, E. D., Antonio Filho, O., Silva, R. R., Araujo, F. H., Diniz, J. O., Silva, A. C., Paiva, A. C., and Gattass, M. (2020). Breast cancer diagnosis from histopathological images using textural features and cbir. Artificial intelligence in medicine, 105:101845.
Chaturvedi, M., Krishnan, S., Das, P., Sudarshan, K., Stephen, S., Monesh, V., and Mathur, P. (2023). Descriptive epidemiology of ovarian cancers in india: A report from national cancer registry programme. Indian Journal of Gynecologic Oncology, 21(1):25.
Diniz, J., Jr, D. D., Cruz, L., Marques, R., Jr, D. G., Cortês, O., Filho, A. C., and Quintanilha, D. (2024a). Efficientensemble: Diagnóstico de câncer de mama em imagens de ultrassom utilizando processamento de imagens e ensemble de efficientnets. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 202–213, Porto Alegre, RS, Brasil. SBC.
Diniz, J., Quintanilha, D., Filho, A. C., Jr, D. G., Silva, A., Jr, G. B., Paiva, A., and Luz, D. (2023). Detecção de covid-19 em imagens de raio-x de tórax através de seleção automática de pré-processamento e de rede neural convolucional. In Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde, pages 162–173, Porto Alegre, RS, Brasil. SBC.
Diniz, J., Ribeiro, N., Junior, D. D., Cruz, L., Filho, A. C., Jr, D. G., Silva, A., and Paiva, A. (2024b). Efficientxyz-deepfeatures: Seleção de esquema de cor e arquitetura deep features na classificação de câncer de cólon em imagens histopatológicas. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 82–93, Porto Alegre, RS, Brasil. SBC.
Gonzalez, R. and Woods, R. (2008). Digital image processing. Pearson, Prentice Hall.
Gonçalves, J., Souza, D., Santos, C., Nascimento, C., Cruz, L., Junior, D. D., and Diniz, J. (2024). D.iagnóstica: Ferramenta cadx para diagnóstico de doenças pulmonares em imagens radiológicas. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 214–225, Porto Alegre, RS, Brasil. SBC.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46:389–422.
Ifty, M. H. S., Nirjan, N., Islam, L., Diganta, M., Ornate, R. A., Tasnim, A., and Islam, M. S. (2025). Automated detection of malignant lesions in the ovary using deep learning models and xai. In 2025 IEEE 4th International Conference on AI in Cyber-security (ICAIC), pages 1–8. IEEE.
Kasture, K. (2021). Ovarian cancer & subtypes dataset histopathology. Mendeley Data.
Lakshmanan, S., Nagaraja, P., Rani, M. M. S., and Shanmugavadivu, P. (2023). Deep convolutional neural network for the prediction of ovarian cancer. In Combating Women’s Health Issues with Machine Learning, pages 107–119. CRC Press.
Leyland, N., Casper, R., Laberge, P., Singh, S. S., Allen, L., Arendas, K., Leyland, N., Allaire, C., Awadalla, A., Best, C., et al. (2010). Endometriosis: diagnosis and management. Journal of Endometriosis, 2(3):107–134.
Nardone, V., Reginelli, A., Rubini, D., Gagliardi, F., Del Tufo, S., Belfiore, M. P., Boldrini, L., Desideri, I., and Cappabianca, S. (2024). Delta radiomics: an updated systematic review. La radiologia medica, 129(8):1197–1214.
Neto, A. C. d. S., Diniz, P. H., Diniz, J. O., Cavalcante, A. B., Silva, A. C., de Paiva, A. C., and de Almeida, J. D. (2018). Diagnosis of non-small cell lung cancer using phylogenetic diversity in radiomics context. In Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27–29, 2018, Proceedings 15, pages 598–604. Springer.
Parekh, V. S. and Jacobs, M. A. (2019). Deep learning and radiomics in precision medcine. Expert review of precision medicine and drug development, 4(2):59–72.
Park, J. E., Kim, H. S., Kim, D., Park, S. Y., Kim, J. Y., Cho, S. J., and Kim, J. H. (2020). A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC cancer, 20:1–11.
Pavithra, S., Kumar, L. A., and Phaniraj, H. (2024). Deep learning perspective for preliminary detection and classification of ovarian cancer. In 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), pages 1–7. IEEE.
Radhakrishnan, M., Sampathila, N., Muralikrishna, H., and Swathi, K. (2024). Advancing ovarian cancer diagnosis through deep learning and explainable ai: A multiclassification approach. IEEE Access.
Reid, B. M., Permuth, J. B., and Sellers, T. A. (2017). Epidemiology of ovarian cancer: a review. Cancer biology & medicine, 14(1):9.
Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G., Fillion-Robin, J.-C., Pieper, S., and Aerts, H. J. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer research, 77(21):e104–e107.
Wong, R. W., Ip, P. P., and Cheung, A. N. (2024). Mucinous tumours of the ovary. In Pathology of the Ovary, Fallopian Tube and Peritoneum, pages 417–438. Springer.
Chaturvedi, M., Krishnan, S., Das, P., Sudarshan, K., Stephen, S., Monesh, V., and Mathur, P. (2023). Descriptive epidemiology of ovarian cancers in india: A report from national cancer registry programme. Indian Journal of Gynecologic Oncology, 21(1):25.
Diniz, J., Jr, D. D., Cruz, L., Marques, R., Jr, D. G., Cortês, O., Filho, A. C., and Quintanilha, D. (2024a). Efficientensemble: Diagnóstico de câncer de mama em imagens de ultrassom utilizando processamento de imagens e ensemble de efficientnets. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 202–213, Porto Alegre, RS, Brasil. SBC.
Diniz, J., Quintanilha, D., Filho, A. C., Jr, D. G., Silva, A., Jr, G. B., Paiva, A., and Luz, D. (2023). Detecção de covid-19 em imagens de raio-x de tórax através de seleção automática de pré-processamento e de rede neural convolucional. In Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde, pages 162–173, Porto Alegre, RS, Brasil. SBC.
Diniz, J., Ribeiro, N., Junior, D. D., Cruz, L., Filho, A. C., Jr, D. G., Silva, A., and Paiva, A. (2024b). Efficientxyz-deepfeatures: Seleção de esquema de cor e arquitetura deep features na classificação de câncer de cólon em imagens histopatológicas. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 82–93, Porto Alegre, RS, Brasil. SBC.
Gonzalez, R. and Woods, R. (2008). Digital image processing. Pearson, Prentice Hall.
Gonçalves, J., Souza, D., Santos, C., Nascimento, C., Cruz, L., Junior, D. D., and Diniz, J. (2024). D.iagnóstica: Ferramenta cadx para diagnóstico de doenças pulmonares em imagens radiológicas. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 214–225, Porto Alegre, RS, Brasil. SBC.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46:389–422.
Ifty, M. H. S., Nirjan, N., Islam, L., Diganta, M., Ornate, R. A., Tasnim, A., and Islam, M. S. (2025). Automated detection of malignant lesions in the ovary using deep learning models and xai. In 2025 IEEE 4th International Conference on AI in Cyber-security (ICAIC), pages 1–8. IEEE.
Kasture, K. (2021). Ovarian cancer & subtypes dataset histopathology. Mendeley Data.
Lakshmanan, S., Nagaraja, P., Rani, M. M. S., and Shanmugavadivu, P. (2023). Deep convolutional neural network for the prediction of ovarian cancer. In Combating Women’s Health Issues with Machine Learning, pages 107–119. CRC Press.
Leyland, N., Casper, R., Laberge, P., Singh, S. S., Allen, L., Arendas, K., Leyland, N., Allaire, C., Awadalla, A., Best, C., et al. (2010). Endometriosis: diagnosis and management. Journal of Endometriosis, 2(3):107–134.
Nardone, V., Reginelli, A., Rubini, D., Gagliardi, F., Del Tufo, S., Belfiore, M. P., Boldrini, L., Desideri, I., and Cappabianca, S. (2024). Delta radiomics: an updated systematic review. La radiologia medica, 129(8):1197–1214.
Neto, A. C. d. S., Diniz, P. H., Diniz, J. O., Cavalcante, A. B., Silva, A. C., de Paiva, A. C., and de Almeida, J. D. (2018). Diagnosis of non-small cell lung cancer using phylogenetic diversity in radiomics context. In Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27–29, 2018, Proceedings 15, pages 598–604. Springer.
Parekh, V. S. and Jacobs, M. A. (2019). Deep learning and radiomics in precision medcine. Expert review of precision medicine and drug development, 4(2):59–72.
Park, J. E., Kim, H. S., Kim, D., Park, S. Y., Kim, J. Y., Cho, S. J., and Kim, J. H. (2020). A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC cancer, 20:1–11.
Pavithra, S., Kumar, L. A., and Phaniraj, H. (2024). Deep learning perspective for preliminary detection and classification of ovarian cancer. In 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), pages 1–7. IEEE.
Radhakrishnan, M., Sampathila, N., Muralikrishna, H., and Swathi, K. (2024). Advancing ovarian cancer diagnosis through deep learning and explainable ai: A multiclassification approach. IEEE Access.
Reid, B. M., Permuth, J. B., and Sellers, T. A. (2017). Epidemiology of ovarian cancer: a review. Cancer biology & medicine, 14(1):9.
Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G., Fillion-Robin, J.-C., Pieper, S., and Aerts, H. J. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer research, 77(21):e104–e107.
Wong, R. W., Ip, P. P., and Cheung, A. N. (2024). Mucinous tumours of the ovary. In Pathology of the Ovary, Fallopian Tube and Peritoneum, pages 417–438. Springer.
Publicado
09/06/2025
Como Citar
TAMANINI, Breno A.; SOUSA, Victor G. O.; RODRIGUES, Lissandro P. S. C.; OLIVEIRA, Danilo M.; DIAS, Calebe X.; CRUZ, Luana B. da; DINIZ, João O. B.; SOUZA JÚNIOR, Luiz O. O..
Classificação de Carcinoma Endometrioide de Ovário por Transformação de Esquema de Cor e Radiomics em Imagens Histopatológicas. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 68-79.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2025.6930.