Forecasting Weekly Dengue Cases in Brazilian Federative Units
Resumo
Effective epidemic management requires proactive measures, making the accurate prediction of weekly dengue cases in specific regions essential for prevention and control strategies. In this study, we evaluated the effectiveness of classical statistical techniques and machine learning methods in forecasting the number of weekly dengue cases across 27 Brazilian federative units. For each unit, we explored a multivariate one-step prediction strategy, applying wavelet filtering to the features to enhance signal decomposition and improve predictive performance. We investigated the univariate LightGBM model trained on data from 26 cities (cross-learning) and validated it individually in each federative unit using the univariate leave-one-out (LOO) technique with one-step predictions. Additionally, we demonstrated the model’s generalizability by training LightGBM on data from all Brazilian federative units and validating it in a different geographic location, San Juan. The LightGBM LOO model exhibited superior generalization compared to other shallow, deep, and foundation models, including TimeGPT-1 and MOIRAI.Referências
Anumanthan, G., Sahay, B., & Mergia, A. (2025). Current dengue virus vaccine developments and future directions. Viruses, 17:212.
Bavia, L., Melanda, F. N., de Arruda, T. B., Mosimann, A. L. P., Silveira, G. F., Aoki, M. N., Kuczera, D., Sarzi, M. L., Junior, W. L. C., Conchon-Costa, I., Pavanelli, W. R., dos Santos, C. N. D., Barreto, R. C., & Bordignon, J. (2020). Epidemiological study on dengue in southern brazil under the perspective of climate and poverty. Scientific Reports, 10:2127.
Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Aubet, F.-X., Callot, L., & Januschowski, T. (2022). Deep learning for time series forecasting: Tutorial and literature survey. ACM Computing Surveys, 55(6):1–36.
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics & Data Analysis, 120:70–83.
Chen, X. & Moraga, P. (2025). Forecasting dengue across brazil with lstm neural networks and shap-driven lagged climate and spatial effects. BMC Public Health, 25:973.
Codeco, C., Coelho, F., Cruz, O., Oliveira, S., Castro, T., & Bastos, L. (2018). Infodengue: A nowcasting system for the surveillance of arboviruses in brazil. Revue d’Épidémiologie et de Santé Publique, 66:S386. European Congress of Epidemiology “Crises, epidemiological transitions and the role of epidemiologists”.
Diamantis Koutsandreas, Evangelos Spiliotis, F. P. & Assimakopoulos, V. (2022). On the selection of forecasting accuracy measures. Journal of the Operational Research Society, 73(5):937–954.
Elsayed, S., Thyssens, D., Rashed, A., Jomaa, H. S., & Schmidt-Thieme, L. (2021). Do we really need deep learning models for time series forecasting? Garza, A., Challu, C., & Mergenthaler-Canseco, M. (2023). Timegpt-1.
Hyndman, R. J. & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4):679–688.
Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., & Leary, A. (2019). Pywavelets: A python package for wavelet analysis. Journal of Open Source Software, 4(36):1237.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The m4 competition: 100, 000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting, 38(4):1346–1364.
Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M., Leskovec, J., Topol, E. J., & Rajpurkar, P. (2023). Foundation models for generalist medical artificial intelligence. Nature, 616:259–266.
OPAS & OMS (2024). Atualização epidemiológica: Aumento de casos de dengue na região das américas. Acesso em: 13 jul. 2024.
Panja, M., Chakraborty, T., Nadim, S. S., Ghosh, I., Kumar, U., & Liu, N. (2023). An ensemble neural network approach to forecast dengue outbreak based on climatic condition. Chaos, Solitons & Fractals, 167:113124.
Petropoulos, F. & Svetunkov, I. (2020). A simple combination of univariate models. International Journal of Forecasting, 36(1):110–115. M4 Competition.
Rezaei, M. & Shahidi, M. (2020). Zero-shot learning and its applications from autonomous vehicles to covid-19 diagnosis: A review. Intelligence-Based Medicine, 3–4:100005.
Sebastianelli, A., Spiller, D., Carmo, R., Wheeler, J., Nowakowski, A., Jacobson, L. V., Kim, D., Barlevi, H., Cordero, Z. E. R., Colón-González, F. J., Lowe, R., Ullo, S. L., & Schneider, R. (2024). A reproducible ensemble machine learning approach to forecast dengue outbreaks. Scientific Reports, 14(1).
Semenoglou, A.-A., Spiliotis, E., Makridakis, S., & Assimakopoulos, V. (2021). Investigating the accuracy of cross-learning time series forecasting methods. International Journal of Forecasting, 37(3):1072–1084.
Shaikh, M. S. G., SureshKumar, D. B., & Narang, D. (2023). Development of optimized ensemble classifier for dengue fever prediction and recommendation system. Biomedical Signal Processing and Control, 85:104809.
Strang, G. & Nguyen, T. (1996). Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley, MA, 2 edition.
US National Oceanic and Atmospheric Administration (2017). Dengue forecasting project website. Acessado em 21 de fevereiro de 2024.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2023). Attention is all you need.
Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. (2024). Unified training of universal time series forecasting transformers. arXiv preprint arXiv:2402.02592.
World Health Organization (2023). Dengue - global situation. [Online; accessed 12-29-2023].
Zanardo, G., Éfren Souza, Nakamura, F., & Nakamura, E. (2024). Uma comparação entre métodos baseados em aprendizado de máquina para inferir número de casos semanais de dengue. In Anais do LI Seminário Integrado de Software e Hardware, pages 37–48, Porto Alegre, RS, Brasil. SBC.
Zeng, A., Chen, M., Zhang, L., & Xu, Q. (2023). Are transformers effective for time series forecasting? Proceedings of the AAAI Conference on Artificial Intelligence, 37(9):11121–11128.
Bavia, L., Melanda, F. N., de Arruda, T. B., Mosimann, A. L. P., Silveira, G. F., Aoki, M. N., Kuczera, D., Sarzi, M. L., Junior, W. L. C., Conchon-Costa, I., Pavanelli, W. R., dos Santos, C. N. D., Barreto, R. C., & Bordignon, J. (2020). Epidemiological study on dengue in southern brazil under the perspective of climate and poverty. Scientific Reports, 10:2127.
Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Aubet, F.-X., Callot, L., & Januschowski, T. (2022). Deep learning for time series forecasting: Tutorial and literature survey. ACM Computing Surveys, 55(6):1–36.
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics & Data Analysis, 120:70–83.
Chen, X. & Moraga, P. (2025). Forecasting dengue across brazil with lstm neural networks and shap-driven lagged climate and spatial effects. BMC Public Health, 25:973.
Codeco, C., Coelho, F., Cruz, O., Oliveira, S., Castro, T., & Bastos, L. (2018). Infodengue: A nowcasting system for the surveillance of arboviruses in brazil. Revue d’Épidémiologie et de Santé Publique, 66:S386. European Congress of Epidemiology “Crises, epidemiological transitions and the role of epidemiologists”.
Diamantis Koutsandreas, Evangelos Spiliotis, F. P. & Assimakopoulos, V. (2022). On the selection of forecasting accuracy measures. Journal of the Operational Research Society, 73(5):937–954.
Elsayed, S., Thyssens, D., Rashed, A., Jomaa, H. S., & Schmidt-Thieme, L. (2021). Do we really need deep learning models for time series forecasting? Garza, A., Challu, C., & Mergenthaler-Canseco, M. (2023). Timegpt-1.
Hyndman, R. J. & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4):679–688.
Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., & Leary, A. (2019). Pywavelets: A python package for wavelet analysis. Journal of Open Source Software, 4(36):1237.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The m4 competition: 100, 000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting, 38(4):1346–1364.
Moor, M., Banerjee, O., Abad, Z. S. H., Krumholz, H. M., Leskovec, J., Topol, E. J., & Rajpurkar, P. (2023). Foundation models for generalist medical artificial intelligence. Nature, 616:259–266.
OPAS & OMS (2024). Atualização epidemiológica: Aumento de casos de dengue na região das américas. Acesso em: 13 jul. 2024.
Panja, M., Chakraborty, T., Nadim, S. S., Ghosh, I., Kumar, U., & Liu, N. (2023). An ensemble neural network approach to forecast dengue outbreak based on climatic condition. Chaos, Solitons & Fractals, 167:113124.
Petropoulos, F. & Svetunkov, I. (2020). A simple combination of univariate models. International Journal of Forecasting, 36(1):110–115. M4 Competition.
Rezaei, M. & Shahidi, M. (2020). Zero-shot learning and its applications from autonomous vehicles to covid-19 diagnosis: A review. Intelligence-Based Medicine, 3–4:100005.
Sebastianelli, A., Spiller, D., Carmo, R., Wheeler, J., Nowakowski, A., Jacobson, L. V., Kim, D., Barlevi, H., Cordero, Z. E. R., Colón-González, F. J., Lowe, R., Ullo, S. L., & Schneider, R. (2024). A reproducible ensemble machine learning approach to forecast dengue outbreaks. Scientific Reports, 14(1).
Semenoglou, A.-A., Spiliotis, E., Makridakis, S., & Assimakopoulos, V. (2021). Investigating the accuracy of cross-learning time series forecasting methods. International Journal of Forecasting, 37(3):1072–1084.
Shaikh, M. S. G., SureshKumar, D. B., & Narang, D. (2023). Development of optimized ensemble classifier for dengue fever prediction and recommendation system. Biomedical Signal Processing and Control, 85:104809.
Strang, G. & Nguyen, T. (1996). Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley, MA, 2 edition.
US National Oceanic and Atmospheric Administration (2017). Dengue forecasting project website. Acessado em 21 de fevereiro de 2024.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2023). Attention is all you need.
Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. (2024). Unified training of universal time series forecasting transformers. arXiv preprint arXiv:2402.02592.
World Health Organization (2023). Dengue - global situation. [Online; accessed 12-29-2023].
Zanardo, G., Éfren Souza, Nakamura, F., & Nakamura, E. (2024). Uma comparação entre métodos baseados em aprendizado de máquina para inferir número de casos semanais de dengue. In Anais do LI Seminário Integrado de Software e Hardware, pages 37–48, Porto Alegre, RS, Brasil. SBC.
Zeng, A., Chen, M., Zhang, L., & Xu, Q. (2023). Are transformers effective for time series forecasting? Proceedings of the AAAI Conference on Artificial Intelligence, 37(9):11121–11128.
Publicado
09/06/2025
Como Citar
ZANARDO, Giovanni E.; SOUZA, Éfren L.; COLONNA, Juan G.; NAKAMURA, Fabíola G.; NAKAMURA, Eduardo F..
Forecasting Weekly Dengue Cases in Brazilian Federative Units. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 353-364.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2025.7145.