Sistema de Informação para Perguntas e Respostas em Doenças Crônicas
Resumo
No ambiente médico, buscar informações relevantes em artigos científicos é uma tarefa que exige tempo e experiência dos profissionais. Assim, o objetivo deste trabalho é apresentar uma arquitetura de um sistema do tipo Pergunta e Respostas (PR) que auxilie profissionais da área da saúde na busca rápida por respostas. O sistema foi desenvolvido principalmente por técnicas de Mineração de Texto e Recuperação de Informação. A avaliação do sistema está sendo realizada por meio de uma coleção de referência do domínio de doenças crônicas e epigenética e com o uso de medidas de avaliação de desempenho. Este trabalho pretende contribuir com uma arquitetura genérica de sistemas de PR que pode ser adaptada por vários dom´ınios de informação médica.
Referências
Amorim, M. T. C. F. d., Cury, D., and Menezes, C. S. (2012). Um Sistema Inteligênte Baseado em Ontologia para Apoio ao esclarecimento de Dúvidas.
Arrigo, A. J. S., Silva, E. G., Martins, H. P., and Silva, P. P. (2014). Desenvolvimento de um Sistema de Pergunta e Resposta Baseado em Corpus. In 14o Congresso Nacional de Iniciação Científica (CONIC-SEMESP), pages 1–6, São Paulo, SP.
Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern information retrieval, volume 463. ACM Press New York, 1nd edition.
Barker, D. J. P. (2001). Fetal and infant origins of adult disease. Monatsschrift Kinderheilkunde, 149(1):S2–S6.
Ben Abacha, A. and Zweigenbaum, P. (2015). MEANS: A medical question-answering system combining NLP techniques and semantic Web technologies. Information Processing & Management, 51(5):570–594.
Bhat, S., Gijo, E., and Jnanesh, N. (2016). Productivity and performance improvement in the medical records department of a hospital: An application of lean six sigma. International Journal of Productivity and Performance Management, 65(1):98–125.
Bilotti, M.W. and Nyberg, E. (2006). Evaluation for scenario question answering systems. In Proc. of the Int. Conference on Language Resources and Evaluation, pages 1–6.
Bodenreider, O. (2004). The unified medical language system (umls): integrating biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270.
Brin, S. (1999). Extracting patterns and relations from the world wide web. In Selected Papers from the International Workshop on The World Wide Web and Databases, WebDB ’98, pages 172–183, London, UK, UK. Springer-Verlag.
Cao, Y., Liu, F., Simpson, P., Antieau, L., Bennett, A., Cimino, J. J., Ely, J., and Yu, H. (2011). AskHERMES: An online question answering system for complex clinical questions. Journal of biomedical informatics, 44(2):277–88.
Cowie, J. and Lehnert, W. (1996). Information extraction. Comm. of the ACM, 39(1):80–91.
Er, N. P. and Cicekli, I. (2013). A Factoid Question Answering System Using Answer Pattern Matching. In Int. Joint Conf. on Natural Language Processing, pages 854–858.
Gupta, P. and Gupta, V. (2012). A survey of text question answering techniques. International Journal of Computer Applications, 53(4):1–8.
Kolomiyets, O. and Moens, M.-F. (2011). A survey on question answering technology from an information retrieval perspective. Information Sciences, 181(24):5412 – 5434.
Liddy, E. D. (2001). Natural Language Processing. In Decker, M., editor, In Encyclopedia of Library and Information Science, pages 1–15. New York, New York, USA.
Lin, J. and Demner-Fushman, D. (2005). Automatically evaluating answers to definition questions. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pages 931–938.
Miyake, K., Hirasawa, T., Koide, T., and Kubota, T. (2012). Neurodegenerative Diseases, chapter Epigenetics in Autism and Other Neurodevelopmental Diseases, pages 91–98.
Monz, C. (2003). From document retrieval to question answering. Institute for Logic, Language and Computation.
Pollettini, J. T., Baranauskas, J. A., Ruiz, E. S., da Graça Pimentel, M., and Macedo, A. A. (2014). Surveillance for the prevention of chronic diseases through information association. BMC Medical Genomics, 7(1):1–11.
Prestes, K. V. (2011). Avaliação de métodos de seleção da resposta de um sistema de perguntas e respostas. Technical report.
Rzhetsky, A., Seringhaus, M., and Gerstein, M. (2009). Getting Started in Text Mining: Part Two. PLoS Comput Biol, 5(7):e1000411+.
Shortliffe, E. H. and Cimino, J. J. (2013). Biomedical informatics: computer applications in health care and biomedicine. Springer Science & Business Media.
Yen, S.-J., Wu, Y.-C., Yang, J.-C., Lee, Y.-S., Lee, C.-J., and Liu, J.-J. (2013). A support vector machine-based context-ranking model for question answering. Information Sciences, 224:77 – 87.