Identification of Learning Paths in an Undergraduate Course and its Relationship with School Dropout
Abstract
School dropout is one of the main problems that affect higher education. To prevent dropout, students must fulfill a series of requirements presented in the form of courses. Thus, the path followed by students throughout their academic life can be represented by the sequence of courses taken, named learning path. This paper presents two approaches to modeling these paths in an undergraduate degree and uses them to investigate patterns related to dropout. The results show that the first semester's courses, with a high rate of failure, end up acting as barriers to the advancement of students in the degree, leading them to abandon their studies.
Keywords:
learning paths, school dropout, higher education, sequential pattern mining
References
Almatrafi, O., Johri, A., Rangwala, H., e Lester, J. (2016). Identifying course trajectories of high achieving engineering students through data analytics. In 2016 ASEE Annual Conference & Exposition, Nova Orleans, Louisiana. ASEE Conferences.
Bastian, M., Heymann, S., e Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks.
Bean, J. P. e Metzner, B. S. (1985). A conceptual model of nontraditional undergraduate student attrition. Review of Educational Research, 55(4):485–540.
Clements, D. H. e Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2):81–89.
de Sousa, L. R., de Carvalho, V. O., Penteado, B. E., e Affonso, F. J. (2021). A systematic mapping on the use of data mining for the face-to-face school dropout problem.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., e Witten, I. H. (2009). The weka data mining software: An update. SIGKDD Explorations, 11(1).
Ramos, D., de Oliveira, E. H. T., Monteverde, I., e Oliveira, K. (2015). Trilhas de aprendizagem em ambientes virtuais de ensino-aprendizagem: Uma revisão sistemática da literatura. Brazilian Symposium on Computers in Education (Simposio Brasileiro de Informática na Educação - SBIE), 26(1).
Ramos, D. B., Ramos, I. M. M., do Nascimento, P. B., de Souza Amaral, G., e de Oliveira, E. H. T. (2017). Um modelo para trilhas de aprendizagem em um ambiente virtual de aprendizagem. In Simposio Brasileiro de Informática na Educação, 1407–1416.
Santos Baggi, C. A. D. e Lopes, D. A. (2011). Evasão e avaliação institucional no ensino superior: uma discussão bibliográfica. Avaliação: Revista da Avaliação da Educação Superior (Campinas), 16:355 – 374.
Silva Garcia, L. M. L. d. e Salcedo Gomes, R. (2020). Visualização e análise da trajetória de aprendizagem realizada no currículo no ensino superior. Simpósio Brasileiro de Informática na Educação (SBIE 2020), 1593–1602.
Spady, W. G. (1970). Dropouts from higher education: An interdisciplinary review and synthesis. Interchange, 1:64 – 85.
Srikant, R. e Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. In Advances in Database Technology — EDBT ’96 1–17. Springer Berlin Heidelberg.
Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. Review of Educational Research, 45(1):89–125.
Wang, X. (2016). Course-taking patterns of community college students beginning in stem: Using data mining techniques to reveal viable stem transfer pathways. Research in Higher Education, (57):544–569.
Wigdahl, J., Heileman, G., Slim, A., e Abdallah, C. (2014). Curricular efficiency: What role does it play in student success? ASEE Annual Conference and Exposition, Conference Proceedings.
Bastian, M., Heymann, S., e Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks.
Bean, J. P. e Metzner, B. S. (1985). A conceptual model of nontraditional undergraduate student attrition. Review of Educational Research, 55(4):485–540.
Clements, D. H. e Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2):81–89.
de Sousa, L. R., de Carvalho, V. O., Penteado, B. E., e Affonso, F. J. (2021). A systematic mapping on the use of data mining for the face-to-face school dropout problem.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., e Witten, I. H. (2009). The weka data mining software: An update. SIGKDD Explorations, 11(1).
Ramos, D., de Oliveira, E. H. T., Monteverde, I., e Oliveira, K. (2015). Trilhas de aprendizagem em ambientes virtuais de ensino-aprendizagem: Uma revisão sistemática da literatura. Brazilian Symposium on Computers in Education (Simposio Brasileiro de Informática na Educação - SBIE), 26(1).
Ramos, D. B., Ramos, I. M. M., do Nascimento, P. B., de Souza Amaral, G., e de Oliveira, E. H. T. (2017). Um modelo para trilhas de aprendizagem em um ambiente virtual de aprendizagem. In Simposio Brasileiro de Informática na Educação, 1407–1416.
Santos Baggi, C. A. D. e Lopes, D. A. (2011). Evasão e avaliação institucional no ensino superior: uma discussão bibliográfica. Avaliação: Revista da Avaliação da Educação Superior (Campinas), 16:355 – 374.
Silva Garcia, L. M. L. d. e Salcedo Gomes, R. (2020). Visualização e análise da trajetória de aprendizagem realizada no currículo no ensino superior. Simpósio Brasileiro de Informática na Educação (SBIE 2020), 1593–1602.
Spady, W. G. (1970). Dropouts from higher education: An interdisciplinary review and synthesis. Interchange, 1:64 – 85.
Srikant, R. e Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. In Advances in Database Technology — EDBT ’96 1–17. Springer Berlin Heidelberg.
Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. Review of Educational Research, 45(1):89–125.
Wang, X. (2016). Course-taking patterns of community college students beginning in stem: Using data mining techniques to reveal viable stem transfer pathways. Research in Higher Education, (57):544–569.
Wigdahl, J., Heileman, G., Slim, A., e Abdallah, C. (2014). Curricular efficiency: What role does it play in student success? ASEE Annual Conference and Exposition, Conference Proceedings.
Published
2022-11-16
How to Cite
CARMO, Êrica Peters do; GASPARINI, Isabela; OLIVEIRA, Elaine Harada Teixeira de.
Identification of Learning Paths in an Undergraduate Course and its Relationship with School Dropout. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 33. , 2022, Manaus.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 323-333.
DOI: https://doi.org/10.5753/sbie.2022.225737.
