Modelo de Comunicação Molecular Multiportadora com Ruído Intracelular e Intercelular
Resumo
Abordagens promissoras para a engenharia da comunicação de dados para nanorredes são inspiradas nos sistemas biológicos, porém as comunicações moleculares possuem baixo desempenho devido à propagação estocástica dos dados e ao excesso de ruído no ambiente. A presença de ruído gera comunicações propensas a erros e comprometem o desempenho da rede. Desta forma, torna-se necessário caracterizar com precisão e modelar as fontes de ruídos da comunicação molecular. Este artigo investiga o ruído intracelular e intercelular em um modelo de comunicação molecular com multiportadora para nanorredes. O modelo é aplicado para avaliar uma nanorrede na presença de
ruídos através de métricas clássicas como a capacidade do canal e perda (path
loss). A análise permitiu identificar o comportamento do ruído intracelular e como o ruído intercelular afeta o desempenho da comunicação, contribuindo com direções para a construção das nanorredes
Referências
Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., and Koucheryavy, Y. (2015). The internet of bio-nano things. IEEE Commun. Magazine, 53(3):32–40.
Baigent, S., Stark, J., and Warner, A. (1997). Modelling the effect of gap junction nonlinearities in systems of coupled cells. Journal of theoretical biology, 186(2):223–239.
Barros, M., Borges, L., Regis, C., Nogueira, M., and Loureiro, A. (2018a). Internet-das-bionano-coisas: Conectando-se às nanomáquinas. In Guidoni, D., editor, Livro dos Minicursos do SBRC 2018, pages 1–50. SBC.
Barros, M. T., Balasubramaniam, S., and Jennings, B. (2015). Comparative end-to-end analysis of ca 2+-signaling-based molecular communication in biological tissues. IEEE Transactions on Communications, 63(12):5128–5142.
Barros, M. T., Balasubramaniam, S., Jennings, B., and Koucheryavy, Y. (2014). Transmission protocols for calcium-signaling-based molecular communications in deformable cellular tissue. IEEE Transactions on Nanotechnology, 13(4):779–788.
Barros, M. T., Borges, L. F., Régis, C. D. M., Nogueira, M., and Loureiro, A. (2018b). Internet-das-bionano-coisas: Conectando-se às nanomáquinas. In Guidoni, D. L., editor, Livro dos Minicursos do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, chapter 2, pages 1–50. SBC.
Barros, M. T. and Dey, S. (2017). Set point regulation of astrocyte intracellular ca2+ signalling. In IEEE International Conference on Nanotechnology, pages 315–320.
Borges, L. F., Barros, M. T., and Nogueira, M. (2019). Explorando o potencial da molécula IP3 para a comunicação em nanorredes. In Anais do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 29–42. SBC.
Borges, L. F., Barros, M. T., and Nogueira, M. (2020). A Multi-Carrier molecular communication model for astrocyte tissues. In 2020 IEEE International Conference on Communications (ICC): SAC Molecular, Biological, and Multi-Scale Communications Track, Dublin, Ireland.
Bukauskas, F. F., Bukauskiene, A., Bennett, M. V., and Verselis, V. K. (2001). Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophysical journal, 81(1):137–152.
Decrock, E., De Bock, M., Wang, N., Gadicherla, A. K., Bol, M., Delvaeye, T., Vandenabeele, P., Vinken, M., Bultynck, G., Krysko, D. V., et al. (2013). Ip3, a small molecule with a powerful message. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(7):1772–1786.
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. of physical chemistry, 81(25):2340–2361.
Goldbeter, A., Dupont, G., and Berridge, M. J. (1990). Minimal model for signal-induced ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proceedings of the National Academy of Sciences, 87(4):1461–1465.
He, P., Nakano, T., Mao, Y., Lio, P., Liu, Q., and Yang, K. (2017). Stochastic channel switching of frequency-encoded signals in molecular communication networks. IEEE Communications Letters, 22(2):332–335.
He, P., Nakano, T., Mao, Y., Lio, P., Liu, Q., and Yang, K. (2018). Stochastic channel switching of frequency-encoded signals in molecular communication networks. IEEE Communications Letters, 22(2):332–335.
Heren, A. C., Kuran, M. S., Yilmaz, H. B., and Tugcu, T. (2013). Channel capacity of calcium signalling based on inter-cellular calcium waves in astrocytes. In The 3rd IEEE International Workshop on Molecular and Nano Scale Communication.
Höfer, T., Venance, L., and Giaume, C. (2002). Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. Journal of Neuroscience, 22(12):4850–4859.
Kilinc, D. and Akan, O. B. (2013). An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes. IEEE Transactions on Nanotechnology, 12(2):129–136.
Lallouette, J., De Pittà, M., Ben-Jacob, E., and Berry, H. (2014). Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks. Frontiers in Comp. Neurosci., 8:45.
Lavrentovich, M. and Hemkin, S. (2008). A mathematical model of spontaneous calcium (ii) oscillations in astrocytes. J. of Theoretical Biology, 251(4):553–560.
Nakano, T. and Liu, J.-Q. (2010). Design and analysis of molecular relay channels: An information theoretic approach. IEEE Trans. on NanoBioscience, 9(3):213–221.
Nakano, T., Suda, T., Koujin, T., Haraguchi, T., and Hiraoka, Y. (2007). Molecular communication through gap junction channels: System design, experiments and modeling. In Bionetics, pages 139–146. IEEE.
Pierobon, M. and Akyildiz, I. F. (2010). A physical end-to-end model for molecular communication in nanonetworks. IEEE J. on Selected Areas in Comm., 28:602–611.
Venance, L., Stella, N., Glowinski, J., and Giaume, C. (1997). Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J. of Neuroscience, 17(6):1981–1992.
Yu, G., Yi, M., Jia, Y., and Tang, J. (2009). A constructive role of internal noise on coherence resonance induced by external noise in a calcium oscillation system. Chaos, Solitons & Fractals, 41(1):273–283.