Explorando o Potencial da Molécula IP3 para a Comunicação em Nanorredes

  • Ligia Francielle Borges Universidade Federal do Paraná
  • Michael Taynnan Barros Waterford Institute of Technology
  • Michele Nogueira Universidade Federal do Paraná

Resumo


Os avanços em bioengenharia e nanotecnologia proporcionaram o surgimento de dispositivos de dimensões nanométricas, ex. a nanomáquina sintética, as nanoantenas e os nanoinjetores, capazes de detectar e agir sobre seu ambiente. Entretanto, apesar de necessário, é um grande desafio prover a comunicação entre eles. A comunicação eletromagnética convencional não é necessariamente uma opção para as nanorredes devido ao meio de atuação e sua escala. Assim, pesquisadores vêm explorando a comunicação molecular. Particularmente, este artigo investiga o potencial da molécula Inositol Trifosfato (IP3) para a comunicação de dados entre nanodispositivos. Comparado com o desempenho da molécula de cálcio, os resultados para métricas como ganho e a capacidade de comunicação do canal são promissores e colaboram para um detalhado entendimento de como gerenciar a transmissão de dados em um ambiente extracelular. Nossos resultados contribuem para o projeto de nanorredes dentro do tecido celular neural.

Palavras-chave: Nanonetworks, Comunicação Molecular, Células Neuron

Referências

Abshire, P. and Andreou, A. G. (2001). Capacity and energy cost of information in biological and silicon photoreceptors. Proceedings of the IEEE, 89(7):1052–1064.

Baigent, S., Stark, J., and Warner, A. (1997). Modelling the effect of gap junction nonlinearities in systems of coupled cells. Journal of theoretical biology, 186(2):223–239.

Barros, M., Borges, L., Regis, C., Nogueira, M., and Loureiro, A. (2018a). Internet-das-bionanocoisas: Conectando-se às nanomáquinas. In Guidoni, D., editor, Livro dos Minicursos do SBRC 2018, pages 1–50. SBC.

Barros, M. T., Balasubramaniam, S., and Jennings, B. (2015). Comparative end-to-end analysis of ca 2+-signaling-based molecular communication in biological tissues. IEEE Trans. on Communications, 63(12):5128–5142.

Barros, M. T., Balasubramaniam, S., Jennings, B., and Koucheryavy, Y. (2014). Adaptive transmission protocol for molecular communications in cellular tissues. In Communications (ICC), 2014 IEEE International Conference on, pages 3981–3986. IEEE.

Barros, M. T., Silva, W., and Regis, C. D. M. (2018b). The multi-scale impact of the alzheimer’s disease in the topology diversity of astrocytes molecular communications nanonetworks. IEEE Access, pages 78904–78917.

Berridge, M. J. (2012). Calcium signalling remodelling and disease. Biochemical Society Transactions, 40(2):297–309.

Bukauskas, F. F., Bukauskiene, A., Bennett, M. V., and Verselis, V. K. (2001). Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophysical journal, 81(1):137–152.

Decrock, E., De Bock, M., Wang, N., Gadicherla, A. K., Bol, M., Delvaeye, T., Vandenabeele, P., Vinken, M., Bultynck, G., Krysko, D. V., et al. (2013). Ip3, a small molecule with a powerful message. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(7):1772–1786.

Dorh, N., Sarua, A., Ajmal, T., Okache, J., Rega, C., Müller, G., and Cryan, M. (2017). Nanoantenna arrays combining enhancement and beam control for fluorescence-based sensing applications. Applied optics, 56(29):8252–8256.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry, 81(25):2340–2361.

Goldbeter, A., Dupont, G., and Berridge, M. J. (1990). Minimal model for signal-induced ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proceedings of the National Academy of Sciences, 87(4):1461–1465.

Gurgel, P., Branco, K., Teixeira, M. M., et al. (2014). Redes de computadores: da teoria à prática com netkit.
He, P., Nakano, T., Mao, Y., Lio, P., Liu, Q., and Yang, K. (2018). Stochastic channel switching of frequency-encoded signals in molecular communication networks. IEEE Communications Letters, 22(2):332–335.

Khakh, B. S. and Sofroniew, M. V. (2015). Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neuroscience, 18(7):942–952.

Kilinc, D. and Akan, O. B. (2013). An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes. IEEE Transactions on Nanotechnology, 12(2):129–136.

Lallouette, J., De Pittà, M., Ben-Jacob, E., and Berry, H. (2014). Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks. Frontiers in computational neuroscience, 8:1–45.

Lavrentovich, M. and Hemkin, S. (2008). A mathematical model of spontaneous calcium (ii) oscillations in astrocytes. J. of Theoretical Biology, 251(4):553–560.

Nakano, T., Hosoda, K., Nakamura, Y., and Ishii, K. (2013). A biologically-inspired intrabody nanonetwork: design considerations. In Proceedings of the 8th International Conference on Body Area Networks, pages 484–487.

Nakano, T. and Liu, J.-Q. (2010). Design and analysis of molecular relay channels: An information theoretic approach. IEEE Transactions on NanoBioscience, 9(3):213–221.

Nakano, T., Suda, T., Koujin, T., Haraguchi, T., and Hiraoka, Y. (2007). Molecular communication through gap junction channels: System design, experiments and modeling. In Bionetics, pages 139–146. IEEE.

Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., and Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In IEEE NANO, pages 478–481. IEEE.

Peplow, M. (2015). The tiniest lego: a tale of nanoscale motors, rotors, switches and pumps. Nature News, 525(7567):18.

Politi, A., Gaspers, L. D., Thomas, A. P., and Höfer, T. (2006). Models of ip3 and ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophysical journal, 90(9):3120–3133.

Prank, K., Gabbiani, F., and Brabant, G. (2000). Coding efficiency and information rates in transmembrane signaling. Biosystems, 55(1-3):15–22.

Rüdiger, S. (2014). Stochastic models of intracellular calcium signals. Physics Reports, 534(2):39–87.

Shekaramiz, E., Varadarajalu, G., Day, P. J., and Wickramasinghe, H. K. (2016). Integrated electrowetting nanoinjector for single cell transfection. Scientific reports, 6:1–7.

Valiunas, V.,Weingart, R., and Brink, P. R. (2000). Formation of heterotypic gap junction channels by connexins 40 and 43. Circulation research, 86(2):e42–e49.

Van Noorden, R. and Castelvecchi, D. (2016). World’s tiniest machines win chemistry nobel. Nature News, 538(7624):152.

Walsh, F., Balasubramaniam, S., Botvich, D., Suda, T., Nakano, T., Bush, S. F., and Foghlú, M. Ó. (2008). Hybrid dna and enzyme based computing for address encoding, link switching and error correction in molecular communication. In International Conference on Nano-Networks, pages 28–38. Springer.
Publicado
27/08/2019
Como Citar

Selecione um Formato
BORGES, Ligia Francielle; BARROS, Michael Taynnan; NOGUEIRA, Michele . Explorando o Potencial da Molécula IP3 para a Comunicação em Nanorredes. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 37. , 2019, Gramado. Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Porto Alegre: Sociedade Brasileira de Computação, aug. 2019 . p. 29-42. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2019.7348.