Um Protocolo de Sincronização entre Nanomáquinas para Nanorredes Multiusuário
Resumo
As nanorredes compreendem múltiplas nanomáquinas operando no mesmo meio para realizar tarefas coordenadas, tais como a detecção de células tumorais e a entrega automatizada de fármacos no corpo. A comunicação molecular utiliza moléculas como portadoras de informação entre nanomáquinas híbridas. A sincronização é uma questão crítica, pois a interferência multiusuário causa erros ou falhas na comunicação, além das severas limitações computacionais e na comunicação, sendo essencialmente unidirecional. Este artigo apresenta o primeiro protocolo de sincronização entre nanomáquinas considerando uma comunicação multiusuário baseada em sinalização celular. A sinalização do protocolo ocorre por ressonância de pulsos. Os resultados de simulação indicam que o protocolo proposto converge com um baixo número de mensagens.
Referências
Akyildiz, I., Pierobon, M., Balasubramaniam, S., and Koucheryavy, Y. (2015). The internet of bio-nano things. IEEE Communications Magazine.
Akyildiz, I. F., Pierobon, M., and Balasubramaniam, S. (2019). Moving forward with molecular communication: From theory to human health applications [point of view]. Proceedings of the IEEE.
Baigent, S., Stark, J., and Warner, A. (1997). Modelling the effect of gap junction nonlinearities in systems of coupled cells. Journal of theoretical biology.
Barros, M. T., Balasubramaniam, S., and Jennings, B. (2015). Comparative end-to-end analysis of ca 2+-signaling-based molecular communication in biological tissues. IEEE Transactions on Communications.
Barros, M. T., Doan, P., Kandhavelu, M., J. B., and Balasubramaniam, S. (2021). Engineering calcium signaling of astrocytes for neural molecular computing logic gates. Scientific reports. Borges, L. F., Barros, M. T., and Nogueira, M. (2020a). Modelo de comunicação molecular multiportadora com ruído intracelular e intercelular. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 840–853. SBC.
Borges, L. F., Barros, M. T., and Nogueira, M. (2020b). A Multi-Carrier molecular communication model for astrocyte tissues. In IEEE International Conference on Communications (ICC): SAC Molecular, Biological, and Multi-Scale Comm., Dublin, Ireland.
Decrock, E., De Bock, M., Wang, N., Gadicherla, A. K., Bol, M., Delvaeye, T., Vandenabeele, P., Vinken, M., Bultynck, G., Krysko, D. V., et al. (2013). Ip3, a small molecule with a powerful message. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research.
Frandsen, S. K., Vissing, M., and Gehl, J. (2020). A comprehensive review of calcium electroporation—a novel cancer treatment modality. Cancers.
Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. of physical chemistry.
Goldbeter, A., Dupont, G., and Berridge, M. J. (1990). Minimal model for signal-induced ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proceedings of the National Academy of Sciences.
Höfer, T., Venance, L., and Giaume, C. (2002). Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J. of Neuroscience.
Jamali, V., Ahmadzadeh, A., and Schober, R. (2017). Symbol synchronization for diffusive molecular communication systems. In 2017 IEEE International Conference on Communications (ICC), pages 1–7. IEEE.
Khakh, Baljit S and Sofroniew, M. V. (2015). Diversity of astrocyte functions and phenotypes in neural circuits. Nature Neurosci.
Kilinc, D. and Akan, O. B. (2013). An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes. IEEE Trans. on Nanotechnology. Lallouette, J., De Pittà, M., Ben-Jacob, E., and Berry, H. (2014). Sparse short-distance connections enhance calcium wave propagation in a 3d model of astrocyte networks. Frontiers in Comp. Neurosci.
Lavrentovich, M. and Hemkin, S. (2008). A mathematical model of spontaneous calcium (ii) oscillations in astrocytes. J. of Theoretical Biology.
Lin, L., Yang, C., Ma, M., and Ma, S. (2015). Diffusion-based clock synchronization for molecular communication under inverse gaussian distribution. IEEE Sensors Journal.
Luo, Z., Lin, L., and Ma, M. (2016). Offset estimation for clock synchronization in mobile molecular communication system. In 2016 IEEE Wireless Communications and Networking Conference, pages 1–6. IEEE.
Moore, M. J. and Nakano, T. (2013). Oscillation and synchronization of molecular machines by the diffusion of inhibitory molecules. IEEE trans. on nanotec.
Nakano, T. and Liu, J.-Q. (2010). Design and analysis of molecular relay channels: An information theoretic approach. IEEE Trans. on NanoBioscience.
Nakano, T., Suda, T., Koujin, T., Haraguchi, T., and Hiraoka, Y. (2007). Molecular communication through gap junction channels: System design, experiments and modeling. In Bionetics, pages 139–146. IEEE.
Stephenson-Brown, A., Acton, A. L., Preece, J. A., Fossey, J. S., and Mendes, P. M. (2015). Selective glycoprotein detection through covalent templating and allosteric click-imprinting. Chemical science.
Tung, T.-Y. and Mitra, U. (2019). Synchronization error robust transceivers for molecular communication. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. Venance, L., Stella, N., Glowinski, J., and Giaume, C. (1997). Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J. of Neuroscience.