Um Método de Ofuscação para Proteger a Privacidade no Tráfego da Rede IoT
Abstract
The Internet of Things (IoT) connects objects to the Internet, offering intelligent services and applications. Network traffic analysis allows adversaries to identify devices, patterns and even user behavior, seriously compromising user privacy. In the literature, works use network traffic obfuscation techniques to avoid attacks. However, there are still breaches exploited by adversaries because not all network traffic is masked, not to mention the tradeoff between privacy and network overload. This work presents a method for obfuscating network traffic to improve user privacy in the face of IoT attacks. Particularly, the method is based on the technique of generating false traffic following different levels of obfuscation. Such levels allow a balance between network overhead and privacy. Results show the obfuscation of IoT traffic, reducing around 42% the identification precision of IoT devices.
References
Alyami, M., Alharbi, I., Zou, C., Solihin, Y., and Ackerman, K. (2022). WiFi-based IoT devices profiling attack based on eavesdropping of encrypted wifi traffic. In IEEE CCNC, pages 385–392. IEEE.
Apthorpe, N., Huang, D. Y., Reisman, D., Narayanan, A., and Feamster, N. (2018). Keeping the smart home private with smart (er) IoT traffic shaping. arXiv preprint arXiv:1812.00955.
Barman, L., Dumur, A., Pyrgelis, A., and Hubaux, J.-P. (2021). Every byte matters: Traffic analysis of bluetooth wearable devices. arXiv preprint arXiv:2105.11172.
Brasil (2018). Lei nº 13.709, de 14 de agosto de 2018. Lei Geral de Proteção de Dados Pessoais (LGPD). Disponível em: [link]. Acessado em Fevereiro, 2022.
Chaddad, L., Chehab, A., Elhajj, I. H., and Kayssi, A. (2021). Optimal packet camouflage against traffic analysis. ACM Transactions on Privacy and Security (TOPS), 24(3):1–23.
Cisco (2018-2023). Cisco Annual Internet Report (2018–2023) White Paper. Disponível em: [link]. Acessado em Fevereiro, 2022.
Datta, T., Apthorpe, N., and Feamster, N. (2018). A developer-friendly library for smart home IoT privacy-preserving traffic obfuscation. In ACM Workshop IoT S&P, pages 43–48. ACM.
Dyer, K. P., Coull, S. E., Ristenpart, T., and Shrimpton, T. (2012). Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures fail. In IEEE SSP, pages 332–346. IEEE.
He, D., Ye, R., Chan, S., Guizani, M., and Xu, Y. (2018). Privacy in the Internet of things for smart healthcare. IEEE Communication Magazine, 56(4):38–44.
Newaz, A. I., Sikder, A. K., Rahman, M. A., and Uluagac, A. S. (2021). A survey on security and privacy issues in modern healthcare systems: Attacks and defenses. ACM Transactions on Computing for Healthcare (HEALTH), 2(3):1–44.
Papadogiannaki, E. and Ioannidis, S. (2021). A survey on encrypted network traffic analysis applications, techniques, and countermeasures. ACM Computing Surveys (CSUR), 54(6):1–35.
Pinheiro, A. J., de Araujo-Filho, P. F., Bezerra, J. d. M., and Campelo, D. R. (2021). Adaptive packet padding approach for smart home networks: A tradeoff between privacy and performance. IEEE Internet of Things Journal, 8(5):3930–3938.
Prates, N., Pelloso, M., Macedo, R., and Nogueira, M. (2018). Ameaças de segurança, defesas e análise de dados em IoT baseada em SDN. Minicursos SBSeg.
Prates Jr, N., Vergütz, A., Macedo, R., and Nogueira, M. (2019). Um mecanismo de defesa contra ataques traffic side-channel temporais na IoT. In SBSeg, pages 323–336. SBC.
Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A., Wijenayake, C., Vishwanath, A., and Sivaraman, V. (2021). IoT traffic traces. Available: https://iotanalytics.unsw.edu.au/iottraces. Accessed February, 2022.
Srinivasan, V., Stankovic, J., and Whitehouse, K. (2008). Protecting your daily in-home activity information from a wireless snooping attack. In UBICOMP, pages 202–211. ACM.
Statista (2016). Internet of things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions). Available: [link]. Acessado em Jan/2022.
Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., and Markakis, E. K. (2020). A survey on the internet of things (IoT) forensics: challenges, approaches, and open issues. IEEE Communications Surveys and Tutorials, 22(2):1191–1221.
Yu, K., Li, Q., Chen, D., Rahman, M., andWang, S. (2021). Privacyguard: Enhancing smart home user privacy. In IEEE/ACM IPNS, pages 62–76. ACM.
