Preempção Condicional de Pacotes baseada na Vida Média Residual para Otimização da Age of Information em Sistemas Ciberfísicos
Abstract
In the study of Cyberphysical Systems, the Age of Information (AoI) appears as a new concept to represent the degree of updating of the information that a monitor has in relation to an entity or remote process that sends updates periodically. Packet management is a set of techniques and policies that prioritize, block or preempt (drop and replace) packets that arrive at a server and that can be used for AoI optimization. State-of-the-art techniques such as LGFS (Last Generated First Served) have static behavior, performing the same action for all packages: LGFS-S preempts in service and LGFS-W and executes in service queue. The present study proposes a new conditional preemption technique called LGFS-C, which uses the concept of residual half-life to decide the policy to be applied to a packet in service or in the queue. For a single queue model, it is shown that the LGFS-C technique always achieves results equal to or superior to the other techniques, to any distribution of service time in the server. The proposed technique was validated through simulations, with the use of a computational tool specially developed for this purpose.References
Akar, N. (2021). Discrete-time queueing model of age of information with multiple information sources. IEEE Internet of Things Journal, pages 1–1.
Bedewy, A. M., Sun, Y., and Shroff, N. B. (2017a). Age-optimal information updates in multihop networks. pages 576–580.
Bedewy, A. M., Sun, Y., and Shroff, N. B. (2017b). Optimizing data freshness, throughput, and delay in multi-server information-update systems.
Bedewy, A. M., Sun, Y., and Shroff, N. B. (2019). Minimizing the age of information through queues. IEEE Transactions on Information Theory, 65(8):5215–5232.
Bhattacharyya, S. S. and Wolf, M. C. (2020). Research challenges for heterogeneous cyberphysical system design. Computer, 53(7):71–75.
Costa, M., Codreanu, M., and Ephremides, A. (2014). Age of information with packet management. In 2014 IEEE International Symposium on Information Theory, pages 1583–1587.
Costa, M., Codreanu, M., and Ephremides, A. (2016). On the age of information in status update systems with packet management. IEEE Transactions on Information Theory, 62(4):1897–1910.
Gupta, R. C. and Bradley, D. M. (2004). Representing the mean residual life in terms of the failure rate.
Inoue, Y., Masuyama, H., Takine, T., and Tanaka, T. (2019). A general formula for the stationary distribution of the age of information and its application to single-server queues. IEEE Transactions on Information Theory, 65(12):8305–8324.
Kaul, S., Yates, R., and Gruteser, M. (2012a). Real-time status: How often should one update? In 2012 Proceedings IEEE INFOCOM, pages 2731–2735.
Kaul, S. K., Yates, R. D., and Gruteser, M. (2012b). Status updates through queues. In 2012 46th Annual Conference on Information Sciences and Systems (CISS), pages 1–6.
Kosta, A., Pappas, N., Ephremides, A., and Angelakis, V. (2019). Age of information performance of multiaccess strategies with packet management. Journal of Communications and Networks, 21(3):244–255.
Moltafet, M., Leinonen, M., and Codreanu, M. (2020). On the age of information in multi-source queueing models. IEEE Transactions on Communications, 68(8):5003– 5017.
Mugdadi, A.-R. and Teweldemedhin, A. (2013). Two nonparametric estimators of the mean residual life. REVSTAT – Statistical Journal, 11(3):301–315.
Najm, E. and Nasser, R. (2016). Age of information: The gamma awakening. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 2574–2578.
Pappas, N., Gunnarsson, J., Kratz, L., Kountouris, M., and Angelakis, V. (2015). Age of information of multiple sources with queue management. In 2015 IEEE International Conference on Communications (ICC), pages 5935–5940.
Prandel, P. C. and Barreto, P. S. (2021). Computational modeling of age of information for cyber-physical systems. In 2021 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6.
Sun, Y., Uysal-Biyikoglu, E., and Kompella, S. (2018). Age-optimal updates of multiple information flows.
Yates, R. D. and Kaul, S. K. (2019). The age of information: Real-time status updating by multiple sources. IEEE Transactions on Information Theory, 65(3):1807–1827.
Yates, R. D., Sun, Y., Brown, D. R., Kaul, S. K., Modiano, E., and Ulukus, S. (2021). Age of information: An introduction and survey. IEEE Journal on Selected Areas in Communications, 39(5):1183–1210.
Bedewy, A. M., Sun, Y., and Shroff, N. B. (2017a). Age-optimal information updates in multihop networks. pages 576–580.
Bedewy, A. M., Sun, Y., and Shroff, N. B. (2017b). Optimizing data freshness, throughput, and delay in multi-server information-update systems.
Bedewy, A. M., Sun, Y., and Shroff, N. B. (2019). Minimizing the age of information through queues. IEEE Transactions on Information Theory, 65(8):5215–5232.
Bhattacharyya, S. S. and Wolf, M. C. (2020). Research challenges for heterogeneous cyberphysical system design. Computer, 53(7):71–75.
Costa, M., Codreanu, M., and Ephremides, A. (2014). Age of information with packet management. In 2014 IEEE International Symposium on Information Theory, pages 1583–1587.
Costa, M., Codreanu, M., and Ephremides, A. (2016). On the age of information in status update systems with packet management. IEEE Transactions on Information Theory, 62(4):1897–1910.
Gupta, R. C. and Bradley, D. M. (2004). Representing the mean residual life in terms of the failure rate.
Inoue, Y., Masuyama, H., Takine, T., and Tanaka, T. (2019). A general formula for the stationary distribution of the age of information and its application to single-server queues. IEEE Transactions on Information Theory, 65(12):8305–8324.
Kaul, S., Yates, R., and Gruteser, M. (2012a). Real-time status: How often should one update? In 2012 Proceedings IEEE INFOCOM, pages 2731–2735.
Kaul, S. K., Yates, R. D., and Gruteser, M. (2012b). Status updates through queues. In 2012 46th Annual Conference on Information Sciences and Systems (CISS), pages 1–6.
Kosta, A., Pappas, N., Ephremides, A., and Angelakis, V. (2019). Age of information performance of multiaccess strategies with packet management. Journal of Communications and Networks, 21(3):244–255.
Moltafet, M., Leinonen, M., and Codreanu, M. (2020). On the age of information in multi-source queueing models. IEEE Transactions on Communications, 68(8):5003– 5017.
Mugdadi, A.-R. and Teweldemedhin, A. (2013). Two nonparametric estimators of the mean residual life. REVSTAT – Statistical Journal, 11(3):301–315.
Najm, E. and Nasser, R. (2016). Age of information: The gamma awakening. In 2016 IEEE International Symposium on Information Theory (ISIT), pages 2574–2578.
Pappas, N., Gunnarsson, J., Kratz, L., Kountouris, M., and Angelakis, V. (2015). Age of information of multiple sources with queue management. In 2015 IEEE International Conference on Communications (ICC), pages 5935–5940.
Prandel, P. C. and Barreto, P. S. (2021). Computational modeling of age of information for cyber-physical systems. In 2021 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6.
Sun, Y., Uysal-Biyikoglu, E., and Kompella, S. (2018). Age-optimal updates of multiple information flows.
Yates, R. D. and Kaul, S. K. (2019). The age of information: Real-time status updating by multiple sources. IEEE Transactions on Information Theory, 65(3):1807–1827.
Yates, R. D., Sun, Y., Brown, D. R., Kaul, S. K., Modiano, E., and Ulukus, S. (2021). Age of information: An introduction and survey. IEEE Journal on Selected Areas in Communications, 39(5):1183–1210.
Published
2022-05-23
How to Cite
PRANDEL, Paulo César; BARRETO, Priscila Solis.
Preempção Condicional de Pacotes baseada na Vida Média Residual para Otimização da Age of Information em Sistemas Ciberfísicos. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 40. , 2022, Fortaleza.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 461-474.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2022.222346.
