Energy and performance costs evaluation for BLE mesh links

  • Henrique Carvalho Silva USP
  • Cíntia Borges Margi USP

Resumo


Bluetooth Low Energy (BLE for short) is among the favorites to become a de facto standard in the context of the Internet of Things (IoT). However, its main challenge is the lack of standards for efficient mesh networking. Furthermore, the literature lacks works analyzing energy consumption trade-offs for BLE mesh networks. We address this issue by experimentally evaluating three minimal topologies for linking separate BLE star networks. We aim to determine a lower boundary in terms of energy and performance costs using the metrics of energy consumption, delivery rate, and goodput. We perform our experiments using a testbed comprised of TI CC1350 nodes running Contiki OS. Our results enable us to estimate similar costs for large scale networks.

Referências

(2013). Specication of the Bluetooth System. Bluetooth Special Interst Group, Kirkland, WA, USA.

(2016). CC1350 SimpleLink Ultra-Low-Power Dual-Band Wireless MCU. Texas Instruments, Dallas, Texas. SWRS183A.

(2017). Mesh Prole. Bluetooth Special Interst Group, Kirkland, WA, USA.

Alexander, R., Brandt, A., Vasseur, J., Hui, J., Pister, K., Thubert, P., Levis, P., Struik, R., Kelsey, R., and Winter, T. (2012). RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550.

Chang, K. H. (2014). Bluetooth: a viable solution for iot? [industry perspectives]. IEEE Wireless Communications, 21(6):6–7.

Darroudi, S. M. and Gomez, C. (2017). Bluetooth low energy mesh networks: A survey. Sensors, 17(7).

Dementyev, A., Hodges, S., Taylor, S., and Smith, J. (2013). Power consumption analysis of bluetooth low energy, zigbee, and ant sensor nodes in a cyclic sleep scenario. In Proceedings of IEEE International Wireless Symposium (IWS). IEEE.

Dunkels, A., Gronvall, B., and Voigt, T. (2004). Contiki a lightweight and exible operating system for tiny networked sensors. In 29th Annual IEEE International Conference on Local Computer Networks, pages 455–462.

Floyd, S. (2008). Metrics for the Evaluation of Congestion Control Mechanisms. RFC 5166.

Gomez, C., Darroudi, S. M., and Savolainen, T. (2017). IPv6 Mesh over BLUETOOTH(R) Low Energy using IPSP. Internet-Draft draft-ietf-6lo-blemesh-02, Internet Engineering Task Force. Work in Progress.

Gomez, C., Demirkol, I., and Paradells, J. (2011). Modeling the maximum throughIEEE Communications Letters, put of bluetooth low energy in an error-prone link. 15(11):1187–1189.

Gomez, C., Oller, J., and Paradells, J. (2012). Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors, 12(9):11734.

Hortelano, D., Olivares, T., Ruiz, M. C., Garrido-Hidalgo, C., and López, V. (2017). From sensor networks to internet of things. bluetooth low energy, a standard for this evolution. 17:372.

Huang, P., Xiao, L., Soltani, S., Mutka, M. W., and Xi, N. (2013). The evolution of mac protocols in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 15(1):101–120.

Lee, T., Lee, M. S., Kim, H. S., and Bahk, S. (2016). A synergistic architecture for rpl over ble. In 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pages 1–9.

Liu, J., Chen, C., and Ma, Y. (2012). Modeling neighbor discovery in bluetooth low energy networks. IEEE Communications Letters, 16(9):1439–1441.

Liu, J., Chen, C., Ma, Y., and Xu, Y. (2013). Energy analysis of device discovery for In 2013 IEEE 78th Vehicular Technology Conference (VTC bluetooth low energy. Fall), pages 1–5.

Mackensen, E., Lai, M., and Wendt, T. M. (2012). Performance analysis of an bluetooth In 2012 IEEE 1st International Symposium on Wireless low energy sensor system. Systems (IDAACS-SWS), pages 62–66.

Mikhaylov, K., Plevritakis, N., and Tervonen, J. (2013). Performance analysis and comparison of bluetooth low energy with ieee 802.15.4 and simpliciti. Journal of Sensor and Actuator Networks, 2(3):589–613.

Montenegro, G., Hui, J., Culler, D., and Kushalnagar, N. (2007). Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944.

Raza, S., Misra, P., He, Z., and Voigt, T. (2016). Building the internet of things with bluetooth smart.

Shelby, Z., Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., and Gomez, C. (2015). IPv6 over BLUETOOTH(R) Low Energy. RFC 7668.

Siekkinen, M., Hiienkari, M., Nurminen, J. K., and Nieminen, J. (2012). How low energy is bluetooth low energy? comparative measurements with zigbee/802.15.4. In Wireless Communications and Networking Conference Workshops (WCNCW), 2012 IEEE, pages 232–237, Paris, France. IEEE.

Sirur, S., Juturu, P., Gupta, H. P., Serikar, P. R., Reddy, Y. K., Barak, S., and Kim, B. (2015). A mesh network for mobile devices using bluetooth low energy. In 2015 IEEE SENSORS, pages 1–4.

Spoerk, M., Boano, C. A., Zimmerling, M., and Romer, K. (2017). BLEach: Exploiting the Full Potential of IPv6 over BLE in Constrained Embedded IoT Devices. In Proceedings of the 15th ACM International Conference on Embedded Networked Sensor Systems (SenSys).

Want, R., Schilit, B. N., and Jenson, S. (2015). Enabling the internet of things. Computer, 48(1):28–35.
Publicado
10/05/2018
SILVA, Henrique Carvalho; MARGI, Cíntia Borges. Energy and performance costs evaluation for BLE mesh links. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 36. , 2018, Campos do Jordão. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 698-711. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2018.2452.