TEMIS: Provisioning Justice in the Use of Computational Resources in Vehicular Clouds
Abstract
Vehicular Edge Computing (VEC) provides cloud computing services closer to vehicular users by combining computational resources from vehicles and edge nodes to form Vehicular Clouds (VCs). In this scenario, a task scheduler must decide which tasks will be executed on the available VCs, considering contextual aspects such as vehicular mobility and the requirements of these tasks. This is crucial to minimize both processing time and monetary costs associated with resource utilization. However, this direct optimization can lead to resource imbalance, degrading the overall efficiency of the system in terms of performance and fairness in workload distribution. In this context, this work introduces TEMIS, a task scheduling mechanism that takes contextual aspects into account in its decision-making process and applies a probabilistic selection function on VCs to balance processing load and increase fairness in resource utilization. Compared to state-of-the-art solutions, TEMIS demonstrates a higher level of fairness in resource utilization and can schedule a greater number of tasks while minimizing monetary costs and system latency.References
Beraldi, R., Canali, C., Lancellotti, R., and Proietti Mattia, G. (2020). Randomized Load Balancing under Loosely Correlated State Information in Fog Computing. In 23rd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 123–127. ACM.
Chen, C., Li, H., Li, H., Fu, R., Liu, Y., and Wan, S. (2022). Efficiency and Fairness Oriented Dynamic Task Offloading in Internet of Vehicles. IEEE Transactions on Green Communications and Networking, 6(3):1481–1493.
da Costa, J. B., de Souza, A. M., Meneguette, R. I., Cerqueira, E., Rosário, D., and Villas, L. A. (2022). Escalonamento de tarefas ciente de contexto para computaçao de borda veicular. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 15–28. SBC.
da Costa, J. B., Lobato, W., de Souza, A. M., Cerqueira, E., Rosário, D., Sommer, C., and Villas, L. A. (2023a). Mobility-aware vehicular cloud formation mechanism for vehicular edge computing environments. Ad Hoc Networks, 151:103300.
da Costa, J. B. D., de Souza, A. M., Meneguette, R. I., Cerqueira, E., Rosário, D., Sommer, C., and Villas, L. (2023b). Mobility and Deadline-Aware Task Scheduling Mechanism for Vehicular Edge Computing. IEEE Transactions on Intelligent Transportation Systems, 24(10):11345–11359.
Hattab, G., Ucar, S., Higuchi, T., Altintas, O., Dressler, F., and Cabric, D. (2019). Optimized Assignment of Computational Tasks in Vehicular Micro Clouds. In 2nd International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2019). ACM.
Hejja, K., Berri, S., and Labiod, H. (2022). Network slicing with load-balancing for task offloading in vehicular edge computing. Vehicular Communications, 34:100419.
Jain, R. K., Chiu, D.-M. W., Hawe, W. R., et al. (1984). A quantitative measure of fairness and discrimination. Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA, 21.
Ju, Y., Chen, Y., Cao, Z., Liu, L., Pei, Q., Xiao, M., Ota, K., Dong, M., and Leung, V. C. M. (2023). Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 24(5):5555–5569.
Kashani, M. H. and Mahdipour, E. (2023). Load Balancing Algorithms in Fog Computing: A Systematic Review. IEEE Transactions on Services Computing, 16(2):1505–1521.
Keshari, N., Singh, D., and Maurya, A. K. (2022). A survey on Vehicular Fog Computing: Current state-of-the-art and future directions. Vehicular Communications, 38:100512.
Luo, Q., Li, C., Luan, T. H., and Shi, W. (2022). Minimizing the Delay and Cost of Computation Offloading for Vehicular Edge Computing. IEEE Transactions on Services Computing, 15(5):2897–2909.
McClure, S., Ousterhout, A., Shenker, S., and Ratnasamy, S. (2022). Efficient scheduling policies for Microsecond-Scale tasks. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages 1–18.
Mishra, S., Sahoo, M. N., Bakshi, S., and Rodrigues, J. J. P. C. (2020). Dynamic Resource Allocation in Fog-Cloud Hybrid Systems Using Multicriteria AHP Techniques. IEEE Internet of Things Journal, 7(9):8993–9000.
Ribeiro Jr, A., da Costa, J. B., Rocha Filho, G. P., Villas, L. A., Guidoni, D. L., Sampaio, S., and Meneguette, R. I. (2023). Harmonic: Shapley values in market games for resource allocation in vehicular clouds. Ad Hoc Networks, page 103224.
Xue, J., Wang, Q., Zhang, H., An, N., and An, C. (2023). Idle-parked vehicles assisted collaborative resource allocation in VEC based on Stackelberg game. Ad Hoc Networks, 142:103069.
Zhang, J., Guo, H., Liu, J., and Zhang, Y. (2020). Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution. IEEE Transactions on Vehicular Technology, 69(2):2092–2104.
Chen, C., Li, H., Li, H., Fu, R., Liu, Y., and Wan, S. (2022). Efficiency and Fairness Oriented Dynamic Task Offloading in Internet of Vehicles. IEEE Transactions on Green Communications and Networking, 6(3):1481–1493.
da Costa, J. B., de Souza, A. M., Meneguette, R. I., Cerqueira, E., Rosário, D., and Villas, L. A. (2022). Escalonamento de tarefas ciente de contexto para computaçao de borda veicular. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 15–28. SBC.
da Costa, J. B., Lobato, W., de Souza, A. M., Cerqueira, E., Rosário, D., Sommer, C., and Villas, L. A. (2023a). Mobility-aware vehicular cloud formation mechanism for vehicular edge computing environments. Ad Hoc Networks, 151:103300.
da Costa, J. B. D., de Souza, A. M., Meneguette, R. I., Cerqueira, E., Rosário, D., Sommer, C., and Villas, L. (2023b). Mobility and Deadline-Aware Task Scheduling Mechanism for Vehicular Edge Computing. IEEE Transactions on Intelligent Transportation Systems, 24(10):11345–11359.
Hattab, G., Ucar, S., Higuchi, T., Altintas, O., Dressler, F., and Cabric, D. (2019). Optimized Assignment of Computational Tasks in Vehicular Micro Clouds. In 2nd International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2019). ACM.
Hejja, K., Berri, S., and Labiod, H. (2022). Network slicing with load-balancing for task offloading in vehicular edge computing. Vehicular Communications, 34:100419.
Jain, R. K., Chiu, D.-M. W., Hawe, W. R., et al. (1984). A quantitative measure of fairness and discrimination. Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA, 21.
Ju, Y., Chen, Y., Cao, Z., Liu, L., Pei, Q., Xiao, M., Ota, K., Dong, M., and Leung, V. C. M. (2023). Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 24(5):5555–5569.
Kashani, M. H. and Mahdipour, E. (2023). Load Balancing Algorithms in Fog Computing: A Systematic Review. IEEE Transactions on Services Computing, 16(2):1505–1521.
Keshari, N., Singh, D., and Maurya, A. K. (2022). A survey on Vehicular Fog Computing: Current state-of-the-art and future directions. Vehicular Communications, 38:100512.
Luo, Q., Li, C., Luan, T. H., and Shi, W. (2022). Minimizing the Delay and Cost of Computation Offloading for Vehicular Edge Computing. IEEE Transactions on Services Computing, 15(5):2897–2909.
McClure, S., Ousterhout, A., Shenker, S., and Ratnasamy, S. (2022). Efficient scheduling policies for Microsecond-Scale tasks. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages 1–18.
Mishra, S., Sahoo, M. N., Bakshi, S., and Rodrigues, J. J. P. C. (2020). Dynamic Resource Allocation in Fog-Cloud Hybrid Systems Using Multicriteria AHP Techniques. IEEE Internet of Things Journal, 7(9):8993–9000.
Ribeiro Jr, A., da Costa, J. B., Rocha Filho, G. P., Villas, L. A., Guidoni, D. L., Sampaio, S., and Meneguette, R. I. (2023). Harmonic: Shapley values in market games for resource allocation in vehicular clouds. Ad Hoc Networks, page 103224.
Xue, J., Wang, Q., Zhang, H., An, N., and An, C. (2023). Idle-parked vehicles assisted collaborative resource allocation in VEC based on Stackelberg game. Ad Hoc Networks, 142:103069.
Zhang, J., Guo, H., Liu, J., and Zhang, Y. (2020). Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution. IEEE Transactions on Vehicular Technology, 69(2):2092–2104.
Published
2024-05-20
How to Cite
COSTA, Joahannes B. D. da; SOUZA, Allan M. de; ROSÁRIO, Denis; VILLAS, Leandro.
TEMIS: Provisioning Justice in the Use of Computational Resources in Vehicular Clouds. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 15-28.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2024.1225.
