Maximizing Energy Efficiency in Smart Cities: Radio Resource Optimization in LoRa IoT Devices with Linear Programming
Abstract
The growing demand for energy efficiency in urban environments, especially in smart cities, becomes imperative with the massive proliferation of IoT devices on 6G networks. We highlight the critical relevance of LoRa technology for IoT applications in urban environments, highlighting the need to optimize fundamental parameters, such as Spreading Factor (SF) and Transmission Power (TP). The study compares our Linear Programming (LP) proposal with heuristic and pseudorandom methods, demonstrating that our approach stands out notably by significantly reducing energy consumption during data transmissions. These results indicate significant potential to improve both the performance and sustainability of IoT devices in 6G networks.References
Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., and Watteyne, T. (2017). Understanding the limits of lorawan. IEEE Communications Magazine, 55(9):34–40.
ANEEL (2023). Base de dados - nacional brasil.
Babaki, J., Rasti, M., and Aslani, R. (2020). Dynamic spreading factor and power allocation of lora networks for dense iot deployments. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, pages 1–6.
Bor, M., Roedig, U., Voigt, T., and Alonso, J. (2016). Do lora low-power wide-area networks scale? Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., and Tinnirello, I. (2018). Impact of lora imperfect orthogonality: Analysis of link-level performance. IEEE Com- munications Letters, 22(4):796–799.
Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., and Tinnirello, I. (2020). Lora technology demystified: From link behavior to cell-level performance. IEEE Transactions on Wireless Communications, 19(2):822–834.
Croce, D., Gucciardo, M., Tinnirello, I., Garlisi, D., and Mangione, S. (2017). Impact of spreading factor imperfect orthogonality in lora communications. In Towards a Smart and Secure Future Internet, volume 766, pages 6510–6523, Cham, Switzerland. Springer.
J. Petajajarvi, K. Mikhaylov, A. R. T. H. e. M. P. (2015). On the coverage of lpwans: range evaluation and channel attenuation model for lora technology. ITS Telecommunications (ITST), 14th International Conference on. IEEE, pages 55–59.
Jia, G., Han, G., Li, A., and Du, J. (2018). Ssl: Smart street lamp based on fog computing for smarter cities. IEEE Trans. Ind. Informat., 14(11):4995–5004.
Li, S., Raza, U., and Khan, A. (2018). How agile is the adaptive data rate mechanism of lorawan? In 2018 IEEE Global Communications Conference (GLOBECOM), pages 206–212.
Lv, Z., Lou, R., Li, J., Singh, A. K., and Song, H. (2021). Big data analytics for 6g-enabled massive internet of things. IEEE Internet of Things Journal, 8(7):5350–5359.
Mahmood, A., Sisinni, E., Guntupalli, L., Rondón, R., Hassan, S. A., and Gidlund, M. (2019). Scalability analysis of a lora network under imperfect orthogonality. IEEE Trans. Ind. Informat., 15(3):1425–1436.
Park, G., Lee, W., and Joe, I. (2020). Network resource optimization with reinforcement learning for low power wide area networks. EURASIP Journal on Wireless Communications and Networking, 2020.
Premsankar, G., Ghaddar, B., Slabicki, M., and Francesco, M. D. (2020). Optimal configuration of lora networks in smart cities. IEEE Transactions on Industrial Informatics, 16(12):7243–7254.
Rappaport, T. S. (2002). Wireless communications – principles and practice, second edition. (the book end). Microwave Journal, 45(12):128. Gale Academic One-File, link.gale.com/apps/doc/A97115718/AONE?u=googlescholar& sid=bookmark-AONE&xid=b90e8934.
Raza, U., Kulkarni, P., and Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys Tutorials, 19(2):855–873.
Reynders, B., Meert, W., and Pollin, S. (2017). Power and spreading factor control in low power wide area networks. In 2017 IEEE International Conference on Communications (ICC), pages 1–6.
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., and Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Ind. Informat., 14(11):4724–4734.
Slabicki, M., Premsankar, G., and Di Francesco, M. (2018). Adaptive configuration of lora networks for dense iot deployments. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pages 1–9.
Varsier, N. and Schwoerer, J. (2017). Capacity limits of lorawan technology for smart metering applications. In Proc. IEEE Int. Conf. Commun., pages 1–6.
Waret, A., Kaneko, M., Guitton, A., and El Rachkidy, N. (2019). Lora throughput analysis with imperfect spreading factor orthogonality. IEEE Wireless Communications Letters, 8(2):408–411.
Zhu, G., Liao, C.-H., Suzuki, M., Narusue, Y., and Morikawa, H. (2018). Evaluation of lora receiver performance under co-technology interference. In Proc. 15th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC).
ANEEL (2023). Base de dados - nacional brasil.
Babaki, J., Rasti, M., and Aslani, R. (2020). Dynamic spreading factor and power allocation of lora networks for dense iot deployments. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, pages 1–6.
Bor, M., Roedig, U., Voigt, T., and Alonso, J. (2016). Do lora low-power wide-area networks scale? Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., and Tinnirello, I. (2018). Impact of lora imperfect orthogonality: Analysis of link-level performance. IEEE Com- munications Letters, 22(4):796–799.
Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., and Tinnirello, I. (2020). Lora technology demystified: From link behavior to cell-level performance. IEEE Transactions on Wireless Communications, 19(2):822–834.
Croce, D., Gucciardo, M., Tinnirello, I., Garlisi, D., and Mangione, S. (2017). Impact of spreading factor imperfect orthogonality in lora communications. In Towards a Smart and Secure Future Internet, volume 766, pages 6510–6523, Cham, Switzerland. Springer.
J. Petajajarvi, K. Mikhaylov, A. R. T. H. e. M. P. (2015). On the coverage of lpwans: range evaluation and channel attenuation model for lora technology. ITS Telecommunications (ITST), 14th International Conference on. IEEE, pages 55–59.
Jia, G., Han, G., Li, A., and Du, J. (2018). Ssl: Smart street lamp based on fog computing for smarter cities. IEEE Trans. Ind. Informat., 14(11):4995–5004.
Li, S., Raza, U., and Khan, A. (2018). How agile is the adaptive data rate mechanism of lorawan? In 2018 IEEE Global Communications Conference (GLOBECOM), pages 206–212.
Lv, Z., Lou, R., Li, J., Singh, A. K., and Song, H. (2021). Big data analytics for 6g-enabled massive internet of things. IEEE Internet of Things Journal, 8(7):5350–5359.
Mahmood, A., Sisinni, E., Guntupalli, L., Rondón, R., Hassan, S. A., and Gidlund, M. (2019). Scalability analysis of a lora network under imperfect orthogonality. IEEE Trans. Ind. Informat., 15(3):1425–1436.
Park, G., Lee, W., and Joe, I. (2020). Network resource optimization with reinforcement learning for low power wide area networks. EURASIP Journal on Wireless Communications and Networking, 2020.
Premsankar, G., Ghaddar, B., Slabicki, M., and Francesco, M. D. (2020). Optimal configuration of lora networks in smart cities. IEEE Transactions on Industrial Informatics, 16(12):7243–7254.
Rappaport, T. S. (2002). Wireless communications – principles and practice, second edition. (the book end). Microwave Journal, 45(12):128. Gale Academic One-File, link.gale.com/apps/doc/A97115718/AONE?u=googlescholar& sid=bookmark-AONE&xid=b90e8934.
Raza, U., Kulkarni, P., and Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys Tutorials, 19(2):855–873.
Reynders, B., Meert, W., and Pollin, S. (2017). Power and spreading factor control in low power wide area networks. In 2017 IEEE International Conference on Communications (ICC), pages 1–6.
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., and Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Ind. Informat., 14(11):4724–4734.
Slabicki, M., Premsankar, G., and Di Francesco, M. (2018). Adaptive configuration of lora networks for dense iot deployments. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pages 1–9.
Varsier, N. and Schwoerer, J. (2017). Capacity limits of lorawan technology for smart metering applications. In Proc. IEEE Int. Conf. Commun., pages 1–6.
Waret, A., Kaneko, M., Guitton, A., and El Rachkidy, N. (2019). Lora throughput analysis with imperfect spreading factor orthogonality. IEEE Wireless Communications Letters, 8(2):408–411.
Zhu, G., Liao, C.-H., Suzuki, M., Narusue, Y., and Morikawa, H. (2018). Evaluation of lora receiver performance under co-technology interference. In Proc. 15th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC).
Published
2024-05-20
How to Cite
LIMA, Rayane Araújo; SERAPHIM, Marcos A. M.; MOREIRA, Waldir; OLIVEIRA-JR, Antonio.
Maximizing Energy Efficiency in Smart Cities: Radio Resource Optimization in LoRa IoT Devices with Linear Programming. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 393-406.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2024.1401.
