ReqRoute: Reinforcement Routing Protocol for Quantum Entanglement Networks
Abstract
Quantum Internet aims to enable quantum communication between any two points, offering applications such as quantum key distribution (QKD), distributed quantum computing, and entanglement networks. However, the current quantum technology presents challenges with low entanglement (EPR pairs) generation rates, limited quantum memory capacity, and decoherence rates that often lead to unusable EPR pairs due to low fidelity. This presents a significant challenge for tasks such as routing. In this paper, we tackle this challenge by introducing ReqRoute, a quantum-aware routing protocol that utilizes reinforcement learning to optimize quantum routing decisions. We show that ReqRoute consistently outperforms traditional methods by maintaining higher fidelity routes in different network configuration scenarios.References
Abelém, A., Vardoyan, G., and Towsley, D. (2020). Quantum internet: The future of internetworking. In Minicursos do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 48–90. SBC.
Abreu, D., Abelém, A., and Rothenberg, C. R. E. (2022). Desafios e oportunidades de pesquisa para o roteamento em redes quânticas. In Anais do II Workshop de Comunicação e Computação Quântica, pages 37–42. SBC.
Broadbent, A., Fitzsimons, J., and Kashefi, E. (2009). Universal blind quantum computation. In 2009 50th annual IEEE symposium on foundations of computer science.
Caleffi, M., Amoretti, M., Ferrari, D., Cuomo, D., Illiano, J., Manzalini, A., and Cacciapuoti, A. S. (2022). Distributed quantum computing: a survey. arXiv preprint arXiv:2212.10609.
Chakraborty, K., Rozpedek, F., Dahlberg, A., and Wehner, S. (2019). Distributed routing in a quantum internet. arXiv preprint arXiv:1907.11630.
Cuomo, D., Caleffi, M., and Cacciapuoti, A. S. (2020). Towards a distributed quantum computing ecosystem. IET Quantum Communication, 1(1):3–8.
Degen, C. L., Reinhard, F., and Cappellaro, P. (2017). Quantum sensing. Reviews of modern physics, 89(3):035002.
Fischer, A. and Towsley, D. (2021). Distributing graph states across quantum networks. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).
Geddada, V. J. and Lakshmi, P. (2022). Distance based security using quantum entanglement: a survey. In 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), pages 1–4. IEEE.
Gyongyosi, L. and Imre, S. (2018). Decentralized base-graph routing for the quantum internet. Physical Review A, 98(2):022310.
Gyongyosi, L. and Imre, S. (2020). Routing space exploration for scalable routing in the quantum internet. Scientific reports, 10(1):11874.
Gyongyosi, L., Imre, S., and Nguyen, H. V. (2018). A survey on quantum channel capacities. IEEE Communications Surveys & Tutorials, 20(2):1149–1205.
Hasan, S. R., Chowdhury, M. Z., Saiam, M., and Jang, Y. M. (2023). Quantum communication systems: vision, protocols, applications, and challenges. IEEE Access.
Illiano, J., Caleffi, M., Manzalini, A., and Cacciapuoti, A. S. (2022). Quantum internet protocol stack: A comprehensive survey. Computer Networks, 213:109092.
Kozlowski, W., Wehner, S., Van Meter, R., Rijsman, B., Cacciapuoti, A., Caleffi, M., and Nagayama, S. (2023). Rfc 9340 architectural principles for a quantum internet. Architecture, 4:4.
Kumar, A., Krishnamurthi, R., Sharma, G., Jain, S., Srikanth, P., Sharma, K., and Aneja, N. (2023). Revolutionizing modern networks: Advances in ai, machine learning, and blockchain for quantum satellites and uav-based communication. arXiv preprint arXiv:2303.11753.
Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative q-learning for offline reinforcement learning. Advances in Neural Information Processing Systems.
Le, L. and Nguyen, T. N. (2022). Dqra: Deep quantum routing agent for entanglement routing in quantum networks. IEEE Transactions on Quantum Engineering, 3:1–12.
Li, C., Li, T., Liu, Y.-X., and Cappellaro, P. (2021). Effective routing design for remote entanglement generation on quantum networks. npj Quantum Information, 7(10).
Miguel-Ramiro, J., Pirker, A., and Dür, W. (2023). Optimized quantum networks. Quantum, 7:919.
Nain, P., Vardoyan, G., Guha, S., and Towsley, D. (2020). On the analysis of a multipartite entanglement distribution switch. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(2):1–39.
Nötzel, J. and DiAdamo, S. (2020). Entanglement-enhanced communication networks. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).
Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D., and Guha, S. (2019). Routing entanglement in the quantum internet. npj Quantum Information.
Patil, A., Jacobson, J. I., Van Milligen, E., Towsley, D., and Guha, S. (2021). Distance-independent entanglement generation in a quantum network using space-time multiplexed greenberger–horne–zeilinger (ghz) measurements. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 334–345. IEEE.
Patil, A., Pant, M., Englund, D., Towsley, D., and Guha, S. (2022). Entanglement generation in a quantum network at distance-independent rate. npj Quantum Information.
Pirker, A. and Dür, W. (2019). A quantum network stack and protocols for reliable entanglement-based networks. New Journal of Physics, 21(3):033003.
Qiang, W. and Zhongli, Z. (2011). Reinforcement learning model, algorithms and its application. In 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pages 1143–1146. IEEE.
Van Meter, R., Satoh, T., Ladd, T. D., Munro, W. J., and Nemoto, K. (2013). Path selection for quantum repeater networks. Networking Science, 3(1):82–95.
Abreu, D., Abelém, A., and Rothenberg, C. R. E. (2022). Desafios e oportunidades de pesquisa para o roteamento em redes quânticas. In Anais do II Workshop de Comunicação e Computação Quântica, pages 37–42. SBC.
Broadbent, A., Fitzsimons, J., and Kashefi, E. (2009). Universal blind quantum computation. In 2009 50th annual IEEE symposium on foundations of computer science.
Caleffi, M., Amoretti, M., Ferrari, D., Cuomo, D., Illiano, J., Manzalini, A., and Cacciapuoti, A. S. (2022). Distributed quantum computing: a survey. arXiv preprint arXiv:2212.10609.
Chakraborty, K., Rozpedek, F., Dahlberg, A., and Wehner, S. (2019). Distributed routing in a quantum internet. arXiv preprint arXiv:1907.11630.
Cuomo, D., Caleffi, M., and Cacciapuoti, A. S. (2020). Towards a distributed quantum computing ecosystem. IET Quantum Communication, 1(1):3–8.
Degen, C. L., Reinhard, F., and Cappellaro, P. (2017). Quantum sensing. Reviews of modern physics, 89(3):035002.
Fischer, A. and Towsley, D. (2021). Distributing graph states across quantum networks. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).
Geddada, V. J. and Lakshmi, P. (2022). Distance based security using quantum entanglement: a survey. In 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), pages 1–4. IEEE.
Gyongyosi, L. and Imre, S. (2018). Decentralized base-graph routing for the quantum internet. Physical Review A, 98(2):022310.
Gyongyosi, L. and Imre, S. (2020). Routing space exploration for scalable routing in the quantum internet. Scientific reports, 10(1):11874.
Gyongyosi, L., Imre, S., and Nguyen, H. V. (2018). A survey on quantum channel capacities. IEEE Communications Surveys & Tutorials, 20(2):1149–1205.
Hasan, S. R., Chowdhury, M. Z., Saiam, M., and Jang, Y. M. (2023). Quantum communication systems: vision, protocols, applications, and challenges. IEEE Access.
Illiano, J., Caleffi, M., Manzalini, A., and Cacciapuoti, A. S. (2022). Quantum internet protocol stack: A comprehensive survey. Computer Networks, 213:109092.
Kozlowski, W., Wehner, S., Van Meter, R., Rijsman, B., Cacciapuoti, A., Caleffi, M., and Nagayama, S. (2023). Rfc 9340 architectural principles for a quantum internet. Architecture, 4:4.
Kumar, A., Krishnamurthi, R., Sharma, G., Jain, S., Srikanth, P., Sharma, K., and Aneja, N. (2023). Revolutionizing modern networks: Advances in ai, machine learning, and blockchain for quantum satellites and uav-based communication. arXiv preprint arXiv:2303.11753.
Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative q-learning for offline reinforcement learning. Advances in Neural Information Processing Systems.
Le, L. and Nguyen, T. N. (2022). Dqra: Deep quantum routing agent for entanglement routing in quantum networks. IEEE Transactions on Quantum Engineering, 3:1–12.
Li, C., Li, T., Liu, Y.-X., and Cappellaro, P. (2021). Effective routing design for remote entanglement generation on quantum networks. npj Quantum Information, 7(10).
Miguel-Ramiro, J., Pirker, A., and Dür, W. (2023). Optimized quantum networks. Quantum, 7:919.
Nain, P., Vardoyan, G., Guha, S., and Towsley, D. (2020). On the analysis of a multipartite entanglement distribution switch. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(2):1–39.
Nötzel, J. and DiAdamo, S. (2020). Entanglement-enhanced communication networks. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).
Pant, M., Krovi, H., Towsley, D., Tassiulas, L., Jiang, L., Basu, P., Englund, D., and Guha, S. (2019). Routing entanglement in the quantum internet. npj Quantum Information.
Patil, A., Jacobson, J. I., Van Milligen, E., Towsley, D., and Guha, S. (2021). Distance-independent entanglement generation in a quantum network using space-time multiplexed greenberger–horne–zeilinger (ghz) measurements. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 334–345. IEEE.
Patil, A., Pant, M., Englund, D., Towsley, D., and Guha, S. (2022). Entanglement generation in a quantum network at distance-independent rate. npj Quantum Information.
Pirker, A. and Dür, W. (2019). A quantum network stack and protocols for reliable entanglement-based networks. New Journal of Physics, 21(3):033003.
Qiang, W. and Zhongli, Z. (2011). Reinforcement learning model, algorithms and its application. In 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pages 1143–1146. IEEE.
Van Meter, R., Satoh, T., Ladd, T. D., Munro, W. J., and Nemoto, K. (2013). Path selection for quantum repeater networks. Networking Science, 3(1):82–95.
Published
2024-05-20
How to Cite
ABREU, Diego; PIMENTEL, Arthur; ABELÉM, Antônio.
ReqRoute: Reinforcement Routing Protocol for Quantum Entanglement Networks. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 630-643.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2024.1450.
