Stepwise Optimal Inter-Slices Radio Resource Scheduling for Service-Level Agreement Assurance

  • Daniel Campos UFG
  • Gabriel M. F. de Almeida UFG
  • William T. P. Junior UFG
  • Cleverson V. Nahum UFPA
  • Aldebaro Klautau UFPA
  • Mohammad J. Abdel-Rahman Princess Sumaya University for Technology / Virginia Tech
  • Kleber V. Cardoso UFG

Resumo


In 5G networks and beyond, radio access networks (RANs) must be able to support multiple services with different service level agreements (SLAs). Network slicing is a critical concept in this context and it depends on an efficient approach for radio resource scheduling (RRS). Inter-slices RRS is responsible for allocating resource block groups (RBGs) to the slices to ensure their SLAs. Mainly motivated by the O-RAN initiative, several works in the literature have presented proposals based on machine learning (ML) to solve this problem. However, there is still a lack of problem formalization and an optimal strategy, which are both introduced in this work. Through simulations, we compare our approach with a state-of-the-art deep reinforcement learning (DRL) agent. The results show the excess resources employed by the agent when they are plentiful, suggesting an unnecessary increase in energy consumption. Additionally, we show the relevant gap between solutions when the resources are scarce. Finally, we discuss guidelines on how to improve ML-based approaches to the inter-slices RRS problem.

Referências

Chen, Y., Yao, R., Hassanieh, H., and Mittal, R. (2023). Channel-Aware 5G RAN Slicing with Customizable Schedulers. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 1767–1782.

ETSI (2020a). 5G; NR; Physical channels and modulation (3GPP TS 38.211 version 16.2.0 release 16). Technical report, European Telecommunications Standards Institute (ETSI).

ETSI (2020b). ETSI TS 136 213. LTE; Evolved Universal Terrestrial Radio Access (EUTRA); Physical Layer Procedures (3GPP TS 36.213 version 15.10.0 Release 15). Technical report, European Telecommunications Standards Institute (ETSI).

Heath Jr, R. W. and Lozano, A. (2018). Foundations of MIMO communication. Cambridge University Press.

Jaeckel, S., Raschkowski, L., Börner, K., and Thiele, L. (2014). Quadriga: A 3-d multicell channel model with time evolution for enabling virtual field trials. IEEE transactions on antennas and propagation, 62(6):3242–3256.

Khodapanah, B., Awada, A., Viering, I., Barreto, A. N., Simsek, M., and Fettweis, G. (2020). Framework for Slice-Aware Radio Resource Management Utilizing Artificial Neural Networks. IEEE Access, 8:174972–174987.

Kokku, R., Mahindra, R., Zhang, H., and Rangarajan, S. (2012). NVS: A Substrate for Virtualizing Wireless Resources in Cellular Networks. IEEE/ACM Transactions on Networking, 20(5):1333–1346.

Lotfi, F., Afghah, F., and Ashdown, J. (2023). Attention-based Open RAN Slice Management using Deep Reinforcement Learning. arXiv:2306.09490 [cs, eess].

Mei, J., Wang, X., Zheng, K., Boudreau, G., Sediq, A. B., and Abou-Zeid, H. (2021). Intelligent Radio Access Network Slicing for Service Provisioning in 6G: A Hierarchical Deep Reinforcement Learning Approach. IEEE Transactions on Communications, 69(9):6063–6078.

Mondal, B., Thomas, T. A., Visotsky, E., Vook, F. W., Ghosh, A., Nam, Y.-H., Li, Y., Zhang, J., Zhang, M., Luo, Q., et al. (2015). 3D channel model in 3GPP. IEEE Communications Magazine, 53(3):16–23.

Nahum, C. V., Lopes, V. H., Dreifuerst, R. M., Batista, P., Correa, I., Cardoso, K. V., Klautau, A., and Heath, R. W. (2023). Intent-aware Radio Resource Scheduling in a RAN Slicing Scenario using Reinforcement Learning. IEEE Transactions on Wireless Communications, pages 1–1.

Polese, M., Bonati, L., D’Oro, S., Basagni, S., and Melodia, T. (2022). ColO-RAN: Developing Machine Learning-based xApps for Open RAN Closed-loop Control on Programmable Experimental Platforms. IEEE Transactions on Mobile Computing, pages 1–14.

Polese, M., Bonati, L., D’Oro, S., Basagni, S., and Melodia, T. (2023). Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges. IEEE Communications Surveys & Tutorials, 25(2):1376–1411.

Zhu, Q., Wang, C.-X., Hua, B., Mao, K., Jiang, S., and Yao, M. (2021). 3GPP TR 38.901 channel model. In the wiley 5G Ref: the essential 5G reference online, pages 1–35. Wiley Press.
Publicado
20/05/2024
CAMPOS, Daniel; ALMEIDA, Gabriel M. F. de; JUNIOR, William T. P.; NAHUM, Cleverson V.; KLAUTAU, Aldebaro; ABDEL-RAHMAN, Mohammad J.; CARDOSO, Kleber V.. Stepwise Optimal Inter-Slices Radio Resource Scheduling for Service-Level Agreement Assurance. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 840-853. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1482.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2