Quantum Networks Under Attack: Black Hole Repeaters
Abstract
Quantum networks promise unparalleled security by leveraging entanglement-based protocols and trusted quantum repeaters to enable applications such as quantum key distribution and distributed quantum computing. However, as these networks evolve in complexity, they expose new operational and control vulnerabilities that can be exploited by adversaries. Among these vulnerabilities, subtle attacks on the entanglement swapping process and manipulating performance metrics pose significant challenges to network integrity and efficiency. This study delves into a relatively unexplored class of threats: the Black Hole Repeater attacks. These attacks involve malicious nodes deliberately introducing errors or falsifying metrics that undermine the success rate of quantum operations and lead to resource inefficiencies while remaining undetectable by traditional monitoring techniques such as quantum tomography. Through simulations in diverse network topologies, we demonstrate the potential impact of these attacks on key performance metrics, underscoring the need for adaptive monitoring solutions and resilient architectures to enhance the security of quantum networks.
Keywords:
Quantum Networks, Attacks in Quantum Networks, Quantum Black Hole
References
Abreu, D., Pimentel, A., Moraes, P., Tavares, D., Veloso, A., and Abelém, A. (2024). Multipurpose quantum network simulators: A comparative study. In Workshop de Redes Quânticas, pages 25–30. SBC.
Altepeter, J. B., Jeffrey, E. R., and Kwiat, P. G. (2005). Photonic state tomography. Advances in Atomic, Molecular, and Optical Physics, 52:105–159.
Azuma, K., Economou, S. E., Elkouss, D., Hilaire, P., Jiang, L., Lo, H.-K., and Tzitrin, I. (2023). Quantum repeaters: From quantum networks to the quantum internet. Reviews of Modern Physics, 95(4):045006.
Chehimi, M. and Saad, W. (2022). Physics-informed quantum communication networks: A vision toward the quantum internet. IEEE Network, 36(5):32–38.
De Andrade, M. G., Diaz, J., Navas, J., Guha, S., Montaño, I., Smith, B., Raymer, M., and Towsley, D. (2022). Quantum network tomography with multi-party state distribution. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 400–409. IEEE.
Guedes de Andrade, M., Navas, J., Guha, S., Montaño, I., Raymer, M., Smith, B., and Towsley, D. (2024). Quantum network tomography. IEEE Network, 38(5):114–122.
Gyongyosi, L. and Imre, S. (2020). Entanglement accessibility measures for the quantum internet. Quantum Information Processing, 19:1–28.
Harkness, A., Krawec, W. O., and Wang, B. (2024). Security of partially corrupted quantum repeater networks. Quantum Science and Technology, 10(1):015005.
Jain, N., Stiller, B., Khan, I., Elser, D., Marquardt, C., and Leuchs, G. (2016). Attacks on practical quantum key distribution systems (and how to prevent them). Contemporary Physics, 57(3):366–387.
Jiang, J.-L., Luo, M.-X., and Ma, S.-Y. (2024). Quantum network capacity of entangled quantum internet. IEEE Journal on Selected Areas in Communications.
Mastriani, M. (2023). Simplified entanglement swapping protocol for the quantum internet. Scientific Reports, 13(1):21998.
Salimian, S., Tavassoly, M., and Ghasemi, M. (2023). Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without bell state measurement. Scientific Reports, 13(1):16342.
Satoh, T., Nagayama, S., Oka, T., and Van Meter, R. (2018). The network impact of hijacking a quantum repeater. Quantum Science and Technology, 3(3):034008.
Satoh, T., Nagayama, S., Suzuki, S., Matsuo, T., Hajdušek, M., and Van Meter, R. (2021). Attacking the quantum internet. IEEE Transactions on Quantum Engineering, 2:1–17.
Suzuki, S. and Van Meter, R. (2015). Classification of quantum repeater attacks. In Proc. NDSS Workshop on Security of Emerging Technologies.
Van Meter, R., Satoh, T., Ladd, T. D., Munro, W. J., and Nemoto, K. (2013). Path selection for quantum repeater networks. Networking Science, 3:82–95.
Wehner, S., Elkouss, D., and Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412):eaam9288.
Zangi, S. M., Shukla, C., Ur Rahman, A., and Zheng, B. (2023). Entanglement swapping and swapped entanglement. Entropy, 25(3):415.
Altepeter, J. B., Jeffrey, E. R., and Kwiat, P. G. (2005). Photonic state tomography. Advances in Atomic, Molecular, and Optical Physics, 52:105–159.
Azuma, K., Economou, S. E., Elkouss, D., Hilaire, P., Jiang, L., Lo, H.-K., and Tzitrin, I. (2023). Quantum repeaters: From quantum networks to the quantum internet. Reviews of Modern Physics, 95(4):045006.
Chehimi, M. and Saad, W. (2022). Physics-informed quantum communication networks: A vision toward the quantum internet. IEEE Network, 36(5):32–38.
De Andrade, M. G., Diaz, J., Navas, J., Guha, S., Montaño, I., Smith, B., Raymer, M., and Towsley, D. (2022). Quantum network tomography with multi-party state distribution. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 400–409. IEEE.
Guedes de Andrade, M., Navas, J., Guha, S., Montaño, I., Raymer, M., Smith, B., and Towsley, D. (2024). Quantum network tomography. IEEE Network, 38(5):114–122.
Gyongyosi, L. and Imre, S. (2020). Entanglement accessibility measures for the quantum internet. Quantum Information Processing, 19:1–28.
Harkness, A., Krawec, W. O., and Wang, B. (2024). Security of partially corrupted quantum repeater networks. Quantum Science and Technology, 10(1):015005.
Jain, N., Stiller, B., Khan, I., Elser, D., Marquardt, C., and Leuchs, G. (2016). Attacks on practical quantum key distribution systems (and how to prevent them). Contemporary Physics, 57(3):366–387.
Jiang, J.-L., Luo, M.-X., and Ma, S.-Y. (2024). Quantum network capacity of entangled quantum internet. IEEE Journal on Selected Areas in Communications.
Mastriani, M. (2023). Simplified entanglement swapping protocol for the quantum internet. Scientific Reports, 13(1):21998.
Salimian, S., Tavassoly, M., and Ghasemi, M. (2023). Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without bell state measurement. Scientific Reports, 13(1):16342.
Satoh, T., Nagayama, S., Oka, T., and Van Meter, R. (2018). The network impact of hijacking a quantum repeater. Quantum Science and Technology, 3(3):034008.
Satoh, T., Nagayama, S., Suzuki, S., Matsuo, T., Hajdušek, M., and Van Meter, R. (2021). Attacking the quantum internet. IEEE Transactions on Quantum Engineering, 2:1–17.
Suzuki, S. and Van Meter, R. (2015). Classification of quantum repeater attacks. In Proc. NDSS Workshop on Security of Emerging Technologies.
Van Meter, R., Satoh, T., Ladd, T. D., Munro, W. J., and Nemoto, K. (2013). Path selection for quantum repeater networks. Networking Science, 3:82–95.
Wehner, S., Elkouss, D., and Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412):eaam9288.
Zangi, S. M., Shukla, C., Ur Rahman, A., and Zheng, B. (2023). Entanglement swapping and swapped entanglement. Entropy, 25(3):415.
Published
2025-05-19
How to Cite
SMITH, Artur; ABREU, Diego; PIMENTEL, Arthur; ABELÉM, Antônio.
Quantum Networks Under Attack: Black Hole Repeaters. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 43. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 266-279.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2025.5902.
