NFV-TE: Uma Ferramenta para a Geração Automática de Funções Virtuais Rede para Engenharia de Tráfego

  • Felipe Ribeiro Quiles UFPR
  • João Vitor Moreira UFPR
  • Vinicius Fulber-Garcia UFPR
  • Elias P. Duarte Jr. UFPR

Abstract


The unprecedented growth of computer and telecommunication networks has led to an extraordinary increase in network traffic. Traffic engineering consists of mechanisms related to monitoring, characterizing, modeling and controlling network traffic, in order to guarantee network performance. This work describes NFV-TE, a tool for generating virtual network functions for traffic engineering. The NFV (Network Function Virtualization) paradigm brings flexibility to networks by allowing the implementation of core functions on a software plane. After the network operator enters a set of features of the desired traffic engineering mechanism, NFV-TE validates and consolidates the data on a JSON configuration file, from which the corresponding virtual network function is generated. This paper describes various policers and shapers generated by NFV-TE, describing their execution in different scenarios and under different network traffic profiles.

References

Bondan, L., Franco, M. F., Marcuzzo, L., Venancio, G., Santos, R. L., Pfitscher, R. J., Scheid, E. J., Stiller, B., De Turck, F., Duarte, E. P., et al. (2019). Fende: marketplace-based distribution, execution, and life cycle management of vnfs. IEEE Communications Magazine, 57(1):13–19.

Dong, L. and Clemm, A. (2021). High-precision end-to-end latency guarantees using packet wash. In Int. Symp. Integrated Network Management, pages 259–267. IEEE.

Evans, J. W. and Filsfils, C. (2010). Deploying IP and MPLS QoS for multiservice networks: theory and practice. Elsevier.

Fulber-Garcia, V., Duarte Jr, E. P., Huff, A., and dos Santos, C. R. (2020). Network service topology: Formalization, taxonomy and the custom specification model. Computer Networks, 178:107337.

Fulber-Garcia, V., Gaiardo, G. d. F., da Cruz Marcuzzo, L., Nunes, R. C., and dos Santos, C. R. P. (2018). Demons: A ddos mitigation nfv solution. In International Conference on Advanced Information Networking and Applications, pages 769–776. IEEE.

Fulber-Garcia, V., Marcuzzo, L. d. C., Huff, A., Bondan, L., Nobre, J. C., Schaeffer-Filho, A., dos Santos, C. R., Granville, L. Z., and Duarte, E. P. (2019). On the design of a flexible architecture for virtualized network function platforms. In 2019 IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE.

Hamdan, M., Mohammed, B., Humayun, U., Abdelaziz, A., Khan, S., Ali, M. A., Imran, M., and Marsono, M. N. (2020). Flow-aware elephant flow detection for software-defined networks. IEEE Access, 8:72585–72597.

Maji, S., Veeraraghavan, M., Buchanan, M., Alali, F., Ros-Giral, J., and Commike, A. (2017). A high-speed cheetah flow identification network function (cfinf). In 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages 1–7.

Nucci, A. and Papagiannaki, K. (2009). Design, measurement and management of large-scale IP networks: Bridging the gap between theory and practice. Cambridge U. Press.

Sarvotham, S., Riedi, R., and Baraniuk, R. (2001). Connection-level analysis and modeling of network traffic. IMW ’01, page 99–103, New York, NY, USA. ACM.
Published
2022-05-23
QUILES, Felipe Ribeiro; MOREIRA, João Vitor; FULBER-GARCIA, Vinicius; DUARTE JR., Elias P.. NFV-TE: Uma Ferramenta para a Geração Automática de Funções Virtuais Rede para Engenharia de Tráfego. In: DEMO SESSION - BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 40. , 2022, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 1-8. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc_estendido.2022.222397.